Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Create SemanticKITTI pkl #2253

Merged
merged 7 commits into from
Feb 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions tools/create_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
from tools.dataset_converters import semantickitti_converter
from tools.dataset_converters.create_gt_database import (
GTDatabaseCreater, create_groundtruth_database)
from tools.dataset_converters.update_infos_to_v2 import update_pkl_infos
Expand Down Expand Up @@ -225,6 +226,17 @@ def waymo_data_prep(root_path,
num_worker=workers).create()


def semantickitti_data_prep(info_prefix, out_dir):
"""Prepare the info file for SemanticKITTI dataset.

Args:
info_prefix (str): The prefix of info filenames.
out_dir (str): Output directory of the generated info file.
"""
semantickitti_converter.create_semantickitti_info_file(
info_prefix, out_dir)


parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
Expand Down Expand Up @@ -339,5 +351,8 @@ def waymo_data_prep(root_path,
info_prefix=args.extra_tag,
out_dir=args.out_dir,
workers=args.workers)
elif args.dataset == 'semantickitti':
semantickitti_data_prep(
info_prefix=args.extra_tag, out_dir=args.out_dir)
else:
raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')
101 changes: 101 additions & 0 deletions tools/dataset_converters/semantickitti_converter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
from os import path as osp
from pathlib import Path

import mmengine

total_num = {
0: 4541,
1: 1101,
2: 4661,
3: 801,
4: 271,
5: 2761,
6: 1101,
7: 1101,
8: 4071,
9: 1591,
10: 1201,
11: 921,
12: 1061,
13: 3281,
14: 631,
15: 1901,
16: 1731,
17: 491,
18: 1801,
19: 4981,
20: 831,
21: 2721,
}
fold_split = {
'train': [0, 1, 2, 3, 4, 5, 6, 7, 9, 10],
'val': [8],
'test': [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
}
split_list = ['train', 'valid', 'test']


def get_semantickitti_info(split):
"""Create info file in the form of
data_infos={
'metainfo': {'DATASET': 'SemanticKITTI'},
'data_list': {
00000: {
'lidar_points':{
'lidat_path':'sequences/00/velodyne/000000.bin'
},
'pts_semantic_mask_path':
'sequences/000/labels/000000.labbel',
'sample_id': '00'
},
...
}
}
"""
data_infos = dict()
data_infos['metainfo'] = dict(DATASET='SemanticKITTI')
data_list = []
for i_folder in fold_split[split]:
for j in range(0, total_num[i_folder]):
xizaoqu marked this conversation as resolved.
Show resolved Hide resolved
data_list.append({
'lidar_points': {
'lidar_path':
osp.join('sequences',
str(i_folder).zfill(2), 'velodyne',
str(j).zfill(6) + '.bin')
},
'pts_semantic_mask_path':
osp.join('sequences',
str(i_folder).zfill(2), 'labels',
str(j).zfill(6) + '.label'),
'sample_id':
str(i_folder) + str(j)
})
data_infos.update(dict(data_list=data_list))
return data_infos


def create_semantickitti_info_file(pkl_prefix, save_path):
"""Create info file of SemanticKITTI dataset.

Directly generate info file without raw data.

Args:
pkl_prefix (str): Prefix of the info file to be generated.
save_path (str): Path to save the info file.
"""
print('Generate info.')
save_path = Path(save_path)

semantickitti_infos_train = get_semantickitti_info(split='train')
filename = save_path / f'{pkl_prefix}_infos_train.pkl'
print(f'SemanticKITTI info train file is saved to {filename}')
mmengine.dump(semantickitti_infos_train, filename)
semantickitti_infos_val = get_semantickitti_info(split='val')
filename = save_path / f'{pkl_prefix}_infos_val.pkl'
print(f'SemanticKITTI info val file is saved to {filename}')
mmengine.dump(semantickitti_infos_val, filename)
semantickitti_infos_test = get_semantickitti_info(split='test')
filename = save_path / f'{pkl_prefix}_infos_test.pkl'
print(f'SemanticKITTI info test file is saved to {filename}')
mmengine.dump(semantickitti_infos_test, filename)