Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Benchmark] Add BiSeNetV1 COCO-Stuff 164k benchmark #1019

Merged
merged 5 commits into from
Nov 17, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion configs/bisenetv1/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,19 @@
| BiSeNetV1 (No Pretrain) | R-50-D32 | 1024x1024 | 160000 | 15.39 | 7.71 | 76.92 | 78.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639.log.json) |
| BiSeNetV1 | R-50-D32 | 1024x1024 | 160000 | 15.39 | 7.71 | 77.68 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628.log.json) |

### COCO-Stuff 164k

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | --------- | --------- | ------: | -------- | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| BiSeNetV1 (No Pretrain) | R-18-D32 | 512x512 | 160000 | - | - | 25.45 | 26.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328.log.json) |
| BiSeNetV1| R-18-D32 | 512x512 | 160000 | 6.33 | 74.24 | 28.55 | 29.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100.log.json) |
| BiSeNetV1 (No Pretrain) | R-50-D32 | 512x512 | 160000 | - | - | 29.82 | 30.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616.log.json) |
| BiSeNetV1 | R-50-D32 | 512x512 | 160000 | 9.28 | 32.60 | 34.88 | 35.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932.log.json) |
| BiSeNetV1(No Pretrain) | R-101-D32 | 512x512 | 160000 | - | - | 31.14 | 31.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147.log.json) |
| BiSeNetV1 | R-101-D32 | 512x512 | 160000 | 10.36 | 25.25 | 37.38 | 37.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220.log.json) |

Note:

- `4x8`: Using 4 GPUs with 8 samples per GPU in training.
- Default setting is 4 GPUs with 4 samples per GPU in training.
- For BiSeNetV1 on Cityscapes dataset, default setting is 4 GPUs with 4 samples per GPU in training.
- `No Pretrain` means the model is trained from scratch.
109 changes: 109 additions & 0 deletions configs/bisenetv1/bisenetv1.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ Collections:
Metadata:
Training Data:
- Cityscapes
- COCO-Stuff 164k
Paper:
URL: https://arxiv.org/abs/1808.00897
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
Expand Down Expand Up @@ -123,3 +124,111 @@ Models:
mIoU(ms+flip): 79.57
Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth
- Name: bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k
In Collection: bisenetv1
Metadata:
backbone: R-18-D32
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 25.45
mIoU(ms+flip): 26.15
Config: configs/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth
- Name: bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k
In Collection: bisenetv1
Metadata:
backbone: R-18-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 13.47
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 6.33
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 28.55
mIoU(ms+flip): 29.26
Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth
- Name: bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k
In Collection: bisenetv1
Metadata:
backbone: R-50-D32
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 29.82
mIoU(ms+flip): 30.33
Config: configs/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth
- Name: bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k
In Collection: bisenetv1
Metadata:
backbone: R-50-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 30.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 9.28
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 34.88
mIoU(ms+flip): 35.37
Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth
- Name: bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k
In Collection: bisenetv1
Metadata:
backbone: R-101-D32
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 31.14
mIoU(ms+flip): 31.76
Config: configs/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth
- Name: bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k
In Collection: bisenetv1
Metadata:
backbone: R-101-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 39.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 10.36
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 37.38
mIoU(ms+flip): 37.99
Config: configs/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
_base_ = './bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py'
model = dict(
backbone=dict(
backbone_cfg=dict(
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet101_v1c'))))
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
_base_ = [
'../_base_/models/bisenetv1_r18-d32.py',
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
model = dict(
backbone=dict(
context_channels=(512, 1024, 2048),
spatial_channels=(256, 256, 256, 512),
out_channels=1024,
backbone_cfg=dict(type='ResNet', depth=101)),
decode_head=dict(in_channels=1024, channels=1024, num_classes=171),
auxiliary_head=[
dict(in_channels=512, channels=256, num_classes=171),
dict(in_channels=512, channels=256, num_classes=171),
])
lr_config = dict(warmup='linear', warmup_iters=1000)
optimizer = dict(lr=0.005)
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
_base_ = './bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py'
model = dict(
backbone=dict(
backbone_cfg=dict(
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))), )
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
_base_ = [
'../_base_/models/bisenetv1_r18-d32.py',
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
model = dict(
decode_head=dict(num_classes=171),
auxiliary_head=[
dict(num_classes=171),
dict(num_classes=171),
])
lr_config = dict(warmup='linear', warmup_iters=1000)
optimizer = dict(lr=0.005)
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = './bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py'

model = dict(
backbone=dict(
backbone_cfg=dict(
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'))))
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
_base_ = [
'../_base_/models/bisenetv1_r18-d32.py',
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
model = dict(
backbone=dict(
context_channels=(512, 1024, 2048),
spatial_channels=(256, 256, 256, 512),
out_channels=1024,
backbone_cfg=dict(type='ResNet', depth=50)),
decode_head=dict(in_channels=1024, channels=1024, num_classes=171),
auxiliary_head=[
dict(in_channels=512, channels=256, num_classes=171),
dict(in_channels=512, channels=256, num_classes=171),
])
lr_config = dict(warmup='linear', warmup_iters=1000)
optimizer = dict(lr=0.005)