Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix/apply max interval to SM-2 #527

Merged
merged 1 commit into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions fsrs4anki_optimizer.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# FSRS4Anki v4.10.1 Optimizer\n",
"# FSRS4Anki v4.10.2 Optimizer\n",
"\n",
"[![open in colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-spaced-repetition/fsrs4anki/blob/v4.10.1/fsrs4anki_optimizer.ipynb)\n",
"[![open in colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-spaced-repetition/fsrs4anki/blob/v4.10.2/fsrs4anki_optimizer.ipynb)\n",
"\n",
"↑ Click the above button to open the optimizer on Google Colab.\n",
"\n",
Expand Down Expand Up @@ -112,7 +112,7 @@
}
],
"source": [
"%pip install -q fsrs_optimizer==4.18.1\n",
"%pip install -q fsrs_optimizer==4.18.2\n",
"# for local development\n",
"# import os\n",
"# import sys\n",
Expand Down
71 changes: 45 additions & 26 deletions fsrs4anki_simulator.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"id": "jmXx-hS9ZMVj"
},
"source": [
"# FSRS4Anki v4.10.0 Simulator"
"# FSRS4Anki v4.10.2 Simulator"
]
},
{
Expand All @@ -17,7 +17,7 @@
"id": "lurCmW0Jqz3s"
},
"source": [
"[![open in colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-spaced-repetition/fsrs4anki/blob/v4.8.3/fsrs4anki_simulator.ipynb)\n",
"[![open in colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-spaced-repetition/fsrs4anki/blob/v4.10.2/fsrs4anki_simulator.ipynb)\n",
"\n",
"↑ Click the above button to open the simulator on Google Colab.\n",
"\n",
Expand Down Expand Up @@ -90,10 +90,11 @@
}
],
"source": [
"# %pip install -q fsrs_optimizer==4.18.0\n",
"%pip install -q fsrs_optimizer==4.18.2\n",
"import pandas as pd\n",
"import numpy as np\n",
"import random\n",
"\n",
"# for local development\n",
"# import os\n",
"# import sys\n",
Expand All @@ -111,20 +112,25 @@
"df = pd.read_csv(\"./revlog.csv\")\n",
"df.sort_values(by=[\"card_id\", \"review_time\"], inplace=True, ignore_index=True)\n",
"\n",
"new_card_revlog = df[(df[\"review_state\"] == New) & (df[\"review_rating\"].isin([1, 2, 3, 4]))]\n",
"new_card_revlog = df[\n",
" (df[\"review_state\"] == New) & (df[\"review_rating\"].isin([1, 2, 3, 4]))\n",
"]\n",
"first_rating_prob = np.zeros(4)\n",
"first_rating_prob[new_card_revlog[\"review_rating\"].value_counts().index - 1] = (\n",
" new_card_revlog[\"review_rating\"].value_counts()\n",
" / new_card_revlog[\"review_rating\"].count()\n",
")\n",
"recall_card_revlog = df[(df[\"review_state\"] == Review) & (df[\"review_rating\"].isin([2, 3, 4]))]\n",
"recall_card_revlog = df[\n",
" (df[\"review_state\"] == Review) & (df[\"review_rating\"].isin([2, 3, 4]))\n",
"]\n",
"review_rating_prob = np.zeros(3)\n",
"review_rating_prob[recall_card_revlog[\"review_rating\"].value_counts().index - 2] = (\n",
" recall_card_revlog[\"review_rating\"].value_counts()\n",
" / recall_card_revlog[\"review_rating\"].count()\n",
")\n",
"\n",
"df[\"review_state\"] = df[\"review_state\"].map(lambda x: x if x != New else Learning)\n",
"df[\"review_state\"] = df[\"review_state\"].map(\n",
" lambda x: x if x != New else Learning)\n",
"\n",
"recall_costs = np.zeros(3)\n",
"recall_costs_df = recall_card_revlog.groupby(by=\"review_rating\")[\n",
Expand All @@ -150,7 +156,8 @@
"state_duration[last_state] = duration_sequence[0]\n",
"for i, state in enumerate(state_sequence[1:]):\n",
" state_count[state] = state_count.setdefault(state, 0) + 1\n",
" state_duration[state] = state_duration.setdefault(state, 0) + duration_sequence[i]\n",
" state_duration[state] = state_duration.setdefault(\n",
" state, 0) + duration_sequence[i]\n",
" if state != last_state:\n",
" state_block[state] = state_block.setdefault(state, 0) + 1\n",
" last_state = state\n",
Expand All @@ -159,7 +166,8 @@
"\n",
"if Relearning in state_count and Relearning in state_block:\n",
" forget_cost = round(\n",
" state_duration[Relearning] / state_block[Relearning] / 1000 + recall_cost,\n",
" state_duration[Relearning] /\n",
" state_block[Relearning] / 1000 + recall_cost,\n",
" 1,\n",
" )\n",
"\n",
Expand Down Expand Up @@ -364,23 +372,33 @@
" if factor is None:\n",
" return (graduatingInterval, 2.5) if rating != 4 else (easyInterval, 2.5)\n",
" delay = real_interval - interval\n",
" again_interval = max(\n",
" round(interval * newInterval * intervalModifier + 0.01), minimumInterval\n",
" again_interval = min(\n",
" max(round(interval * newInterval * intervalModifier + 0.01), minimumInterval),\n",
" maximumInterval,\n",
" )\n",
" hard_interval = max(\n",
" round(interval * hardInterval * intervalModifier + 0.01),\n",
" interval + 1,\n",
" minimumInterval,\n",
" hard_interval = min(\n",
" max(\n",
" round(interval * hardInterval * intervalModifier + 0.01),\n",
" interval + 1,\n",
" minimumInterval,\n",
" ),\n",
" maximumInterval,\n",
" )\n",
" good_interval = max(\n",
" round((interval + delay / 2) * factor * intervalModifier + 0.01),\n",
" hard_interval + 1,\n",
" minimumInterval,\n",
" good_interval = min(\n",
" max(\n",
" round((interval + delay / 2) * factor * intervalModifier + 0.01),\n",
" hard_interval + 1,\n",
" minimumInterval,\n",
" ),\n",
" maximumInterval,\n",
" )\n",
" easy_interval = max(\n",
" round(real_interval * factor * intervalModifier * easyBonus + 0.01),\n",
" good_interval + 1,\n",
" minimumInterval,\n",
" easy_interval = min(\n",
" max(\n",
" round(real_interval * factor * intervalModifier * easyBonus + 0.01),\n",
" good_interval + 1,\n",
" minimumInterval,\n",
" ),\n",
" maximumInterval,\n",
" )\n",
" if rating == 1:\n",
" return again_interval, max(factor - 0.2, 1.3)\n",
Expand Down Expand Up @@ -556,15 +574,15 @@
"\n",
" if day >= moving_average_period:\n",
" new_card_per_day_average_per_period[day] = np.true_divide(\n",
" new_card_per_day[day - moving_average_period : day].sum(),\n",
" new_card_per_day[day - moving_average_period: day].sum(),\n",
" moving_average_period,\n",
" )\n",
" review_card_per_day_average_per_period[day] = np.true_divide(\n",
" review_card_per_day[day - moving_average_period : day].sum(),\n",
" review_card_per_day[day - moving_average_period: day].sum(),\n",
" moving_average_period,\n",
" )\n",
" time_per_day_average_per_period[day] = np.true_divide(\n",
" time_per_day[day - moving_average_period : day].sum(),\n",
" time_per_day[day - moving_average_period: day].sum(),\n",
" moving_average_period,\n",
" )\n",
" else:\n",
Expand Down Expand Up @@ -598,7 +616,8 @@
" print(\"learned cards:\", total_learned)\n",
" print(\"time in minutes:\", round(total_time / 60, 1))\n",
" print(\"remembered cards:\", total_remembered)\n",
" print(\"time per remembered card:\", round(total_time / 60 / total_remembered, 2))\n",
" print(\"time per remembered card:\", round(\n",
" total_time / 60 / total_remembered, 2))\n",
" print(\"leeches:\", total_leeches)\n",
"\n",
" save = card[card[\"retrievability\"] > 0].copy()\n",
Expand Down