Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.06469 #5320

Merged
merged 4 commits into from
May 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
359 changes: 359 additions & 0 deletions joss.06469/10.21105.joss.06469.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240508T124800-94c6abc8d50e027f07978773d97ecbeb576868cc</doi_batch_id>
<timestamp>20240508124800</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>97</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Contextualized: Heterogeneous Modeling Toolbox</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Caleb N.</given_name>
<surname>Ellington</surname>
<ORCID>https://orcid.org/0000-0001-7029-8023</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Benjamin J.</given_name>
<surname>Lengerich</surname>
<ORCID>https://orcid.org/0000-0001-8690-9554</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Wesley</given_name>
<surname>Lo</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Aaron</given_name>
<surname>Alvarez</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Andrea</given_name>
<surname>Rubbi</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Manolis</given_name>
<surname>Kellis</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Eric P.</given_name>
<surname>Xing</surname>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>08</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6469</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06469</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11130703</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6469</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06469</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06469</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06469.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="lengerich_automated_2022">
<article_title>Automated Interpretable Discovery of
Heterogeneous Treatment Effectiveness: A COVID-19 Case
Study</article_title>
<author>Lengerich</author>
<journal_title>J. Biomed. Inform.</journal_title>
<doi>10.1016/j.jbi.2022.104086</doi>
<issn>1532-0464</issn>
<cYear>2022</cYear>
<unstructured_citation>Lengerich, B. J., Nunnally, M. E.,
Aphinyanaphongs, Y., Ellington, C., &amp; Caruana, R. (2022). Automated
Interpretable Discovery of Heterogeneous Treatment Effectiveness: A
COVID-19 Case Study. J. Biomed. Inform., 104086.
https://doi.org/10.1016/j.jbi.2022.104086</unstructured_citation>
</citation>
<citation key="stoica_contextual_2020">
<article_title>Contextual Parameter Generation for Knowledge
Graph Link Prediction</article_title>
<author>Stoica</author>
<journal_title>Proceedings of the AAAI Conference on
Artificial Intelligence</journal_title>
<issue>03</issue>
<volume>34</volume>
<doi>10.1609/aaai.v34i03.5693</doi>
<issn>2374-3468</issn>
<cYear>2020</cYear>
<unstructured_citation>Stoica, G., Stretcu, O., Platanios,
E. A., Mitchell, T., &amp; Póczos, B. (2020). Contextual Parameter
Generation for Knowledge Graph Link Prediction. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(03), 3000–3008.
https://doi.org/10.1609/aaai.v34i03.5693</unstructured_citation>
</citation>
<citation key="lengerich_contextualized_2023">
<article_title>Contextualized Machine
Learning</article_title>
<author>Lengerich</author>
<doi>10.48550/arXiv.2310.11340</doi>
<cYear>2023</cYear>
<unstructured_citation>Lengerich, B. J., Ellington, C. N.,
Rubbi, A., Kellis, M., &amp; Xing, E. P. (2023). Contextualized Machine
Learning. arXiv.
https://doi.org/10.48550/arXiv.2310.11340</unstructured_citation>
</citation>
<citation key="ellington_contextualized_2023">
<article_title>Contextualized Networks Reveal Heterogeneous
Transcriptomic Regulation in Tumors at Sample-Specific
Resolution</article_title>
<author>Ellington</author>
<doi>10.1101/2023.12.01.569658</doi>
<cYear>2023</cYear>
<unstructured_citation>Ellington, C. N., Lengerich, B. J.,
Watkins, T. B., Yang, J., Xiao, H., Kellis, M., &amp; Xing, E. P.
(2023). Contextualized Networks Reveal Heterogeneous Transcriptomic
Regulation in Tumors at Sample-Specific Resolution. bioRxiv.
https://doi.org/10.1101/2023.12.01.569658</unstructured_citation>
</citation>
<citation key="lengerich_notmad_2021">
<article_title>NOTMAD: Estimating Bayesian Networks with
Sample-Specific Structures and Parameters</article_title>
<author>Lengerich</author>
<doi>10.48550/arXiv.2111.01104</doi>
<cYear>2021</cYear>
<unstructured_citation>Lengerich, B. J., Ellington, C. N.,
Aragam, B., Xing, E. P., &amp; Kellis, M. (2021). NOTMAD: Estimating
Bayesian Networks with Sample-Specific Structures and Parameters. arXiv.
https://doi.org/10.48550/arXiv.2111.01104</unstructured_citation>
</citation>
<citation key="hastie_varying-coefficient_1993">
<article_title>Varying-Coefficient Models</article_title>
<author>Hastie</author>
<journal_title>Journal of the Royal Statistical Society:
Series B (Methodological)</journal_title>
<issue>4</issue>
<volume>55</volume>
<doi>10.1111/j.2517-6161.1993.tb01939.x</doi>
<issn>2517-6161</issn>
<cYear>1993</cYear>
<unstructured_citation>Hastie, T., &amp; Tibshirani, R.
(1993). Varying-Coefficient Models. Journal of the Royal Statistical
Society: Series B (Methodological), 55(4), 757–779.
https://doi.org/10.1111/j.2517-6161.1993.tb01939.x</unstructured_citation>
</citation>
<citation key="al-shedivat_contextual_2020">
<article_title>Contextual Explanation
Networks</article_title>
<author>Al-Shedivat</author>
<doi>10.48550/arXiv.1705.10301</doi>
<cYear>2020</cYear>
<unstructured_citation>Al-Shedivat, M., Dubey, A., &amp;
Xing, E. P. (2020). Contextual Explanation Networks. arXiv.
https://doi.org/10.48550/arXiv.1705.10301</unstructured_citation>
</citation>
<citation key="lengerich_discriminative_2022">
<article_title>Discriminative Subtyping of Lung Cancers from
Histopathology Images via Contextual Deep Learning</article_title>
<author>Lengerich</author>
<doi>10.1101/2020.06.25.20140053</doi>
<cYear>2022</cYear>
<unstructured_citation>Lengerich, B. J., Al-Shedivat, M.,
Alavi, A., Williams, J., Labbaki, S., &amp; Xing, E. P. (2022).
Discriminative Subtyping of Lung Cancers from Histopathology Images via
Contextual Deep Learning. medRxiv.
https://doi.org/10.1101/2020.06.25.20140053</unstructured_citation>
</citation>
<citation key="al-shedivat_personalized_2018">
<article_title>Personalized Survival Prediction with
Contextual Explanation Networks</article_title>
<author>Al-Shedivat</author>
<doi>10.48550/arXiv.1801.09810</doi>
<cYear>2018</cYear>
<unstructured_citation>Al-Shedivat, M., Dubey, A., &amp;
Xing, E. P. (2018). Personalized Survival Prediction with Contextual
Explanation Networks. arXiv.
https://doi.org/10.48550/arXiv.1801.09810</unstructured_citation>
</citation>
<citation key="deuschel_contextualized_2023">
<article_title>Contextualized Policy Recovery: Modeling and
Interpreting Medical Decisions with Adaptive Imitation
Learning</article_title>
<author>Deuschel</author>
<doi>10.48550/arXiv.2310.07918</doi>
<cYear>2023</cYear>
<unstructured_citation>Deuschel, J., Ellington, C. N.,
Lengerich, B. J., Luo, Y., Friederich, P., &amp; Xing, E. P. (2023).
Contextualized Policy Recovery: Modeling and Interpreting Medical
Decisions with Adaptive Imitation Learning. arXiv.
https://doi.org/10.48550/arXiv.2310.07918</unstructured_citation>
</citation>
<citation key="fan_statistical_1999">
<article_title>Statistical estimation in varying coefficient
models</article_title>
<author>Fan</author>
<journal_title>The Annals of Statistics</journal_title>
<issue>5</issue>
<volume>27</volume>
<doi>10.1214/aos/1017939139</doi>
<issn>0090-5364</issn>
<cYear>1999</cYear>
<unstructured_citation>Fan, J., &amp; Zhang, W. (1999).
Statistical estimation in varying coefficient models. The Annals of
Statistics, 27(5), 1491–1518.
https://doi.org/10.1214/aos/1017939139</unstructured_citation>
</citation>
<citation key="kuijjer_estimating_2019">
<article_title>Estimating Sample-Specific Regulatory
Networks</article_title>
<author>Kuijjer</author>
<journal_title>iScience</journal_title>
<volume>14</volume>
<doi>10.1016/j.isci.2019.03.021</doi>
<issn>2589-0042</issn>
<cYear>2019</cYear>
<unstructured_citation>Kuijjer, M. L., Tung, M. G., Yuan,
G., Quackenbush, J., &amp; Glass, K. (2019). Estimating Sample-Specific
Regulatory Networks. iScience, 14, 226–240.
https://doi.org/10.1016/j.isci.2019.03.021</unstructured_citation>
</citation>
<citation key="wang_bayesian_2022">
<article_title>Bayesian Edge Regression in Undirected
Graphical Models to Characterize Interpatient Heterogeneity in
Cancer</article_title>
<author>Wang</author>
<journal_title>Journal of the American Statistical
Association</journal_title>
<issue>538</issue>
<volume>117</volume>
<doi>10.1080/01621459.2021.2000866</doi>
<issn>0162-1459</issn>
<cYear>2022</cYear>
<unstructured_citation>Wang, Z., Kaseb, A. O., Amin, H. M.,
Hassan, M. M., Wang, W., &amp; Morris, J. S. (2022). Bayesian Edge
Regression in Undirected Graphical Models to Characterize Interpatient
Heterogeneity in Cancer. Journal of the American Statistical
Association, 117(538), 533–546.
https://doi.org/10.1080/01621459.2021.2000866</unstructured_citation>
</citation>
<citation key="parikh_treegl_2011">
<article_title>TREEGL: Reverse engineering tree-evolving
gene networks underlying developing biological lineages</article_title>
<author>Parikh</author>
<journal_title>Bioinformatics</journal_title>
<issue>13</issue>
<volume>27</volume>
<doi>10.1093/bioinformatics/btr239</doi>
<issn>1367-4803</issn>
<cYear>2011</cYear>
<unstructured_citation>Parikh, A. P., Wu, W., Curtis, R. E.,
&amp; Xing, E. P. (2011). TREEGL: Reverse engineering tree-evolving gene
networks underlying developing biological lineages. Bioinformatics,
27(13), i196–204.
https://doi.org/10.1093/bioinformatics/btr239</unstructured_citation>
</citation>
<citation key="kolar_estimating_2010">
<article_title>Estimating time-varying
networks</article_title>
<author>Kolar</author>
<journal_title>The Annals of Applied
Statistics</journal_title>
<issue>1</issue>
<volume>4</volume>
<doi>10.1214/09-AOAS308</doi>
<issn>1932-6157</issn>
<cYear>2010</cYear>
<unstructured_citation>Kolar, M., Song, L., Ahmed, A., &amp;
Xing, E. P. (2010). Estimating time-varying networks. The Annals of
Applied Statistics, 4(1).
https://doi.org/10.1214/09-AOAS308</unstructured_citation>
</citation>
<citation key="zeileis_model-based_2008">
<article_title>Model-Based Recursive
Partitioning</article_title>
<author>Zeileis</author>
<journal_title>Journal of Computational and Graphical
Statistics</journal_title>
<issue>2</issue>
<volume>17</volume>
<doi>10.1198/106186008X319331</doi>
<issn>1061-8600</issn>
<cYear>2008</cYear>
<unstructured_citation>Zeileis, A., Hothorn, T., &amp;
Hornik, K. (2008). Model-Based Recursive Partitioning. Journal of
Computational and Graphical Statistics, 17(2), 492–514.
https://doi.org/10.1198/106186008X319331</unstructured_citation>
</citation>
<citation key="hothorn_partykit_2015">
<article_title>Partykit: A Modular Toolkit for Recursive
Partytioning in R</article_title>
<author>Hothorn</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<issue>118</issue>
<volume>16</volume>
<issn>1533-7928</issn>
<cYear>2015</cYear>
<unstructured_citation>Hothorn, T., &amp; Zeileis, A.
(2015). Partykit: A Modular Toolkit for Recursive Partytioning in R.
Journal of Machine Learning Research, 16(118), 3905–3909.
http://jmlr.org/papers/v16/hothorn15a.html</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading