Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.05618 #5342

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
374 changes: 374 additions & 0 deletions joss.05618/10.21105.joss.05618.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,374 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240510T145759-960ae91c7fe0eec695cd8b37d307c60488c8f490</doi_batch_id>
<timestamp>20240510145758</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>97</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>matbench-genmetrics: A Python library for benchmarking
crystal structure generative models using time-based splits of Materials
Project structures</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Sterling G.</given_name>
<surname>Baird</surname>
<ORCID>https://orcid.org/0000-0002-4491-6876</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Hasan M.</given_name>
<surname>Sayeed</surname>
<ORCID>https://orcid.org/0000-0002-6583-7755</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Joseph</given_name>
<surname>Montoya</surname>
<ORCID>https://orcid.org/0000-0001-5760-2860</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Taylor D.</given_name>
<surname>Sparks</surname>
<ORCID>https://orcid.org/0000-0001-8020-7711</ORCID>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>10</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5618</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05618</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10840604</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5618</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05618</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05618</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05618.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="zhao_physics_2023">
<article_title>Physics guided deep learning for generative
design of crystal materials with symmetry constraints</article_title>
<author>Zhao</author>
<journal_title>npj Comput Mater</journal_title>
<issue>1</issue>
<volume>9</volume>
<doi>10.1038/s41524-023-00987-9</doi>
<issn>2057-3960</issn>
<cYear>2023</cYear>
<unstructured_citation>Zhao, Y., Siriwardane, E. M. D., Wu,
Z., Fu, N., Al-Fahdi, M., Hu, M., &amp; Hu, J. (2023). Physics guided
deep learning for generative design of crystal materials with symmetry
constraints. Npj Comput Mater, 9(1), 1–12.
https://doi.org/10.1038/s41524-023-00987-9</unstructured_citation>
</citation>
<citation key="alverson_generative_2022">
<article_title>Generative adversarial networks and diffusion
models in material discovery</article_title>
<author>Alverson</author>
<doi>10.26434/chemrxiv-2022-6l4pm</doi>
<cYear>2022</cYear>
<unstructured_citation>Alverson, M., Baird, S., Murdock, R.,
&amp; Sparks, T. (2022). Generative adversarial networks and diffusion
models in material discovery.
https://doi.org/10.26434/chemrxiv-2022-6l4pm</unstructured_citation>
</citation>
<citation key="aykol_network_2019">
<article_title>Network analysis of synthesizable materials
discovery</article_title>
<author>Aykol</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>10</volume>
<doi>10.1038/s41467-019-10030-5</doi>
<issn>2041-1723</issn>
<cYear>2019</cYear>
<unstructured_citation>Aykol, M., Hegde, V. I., Hung, L.,
Suram, S., Herring, P., Wolverton, C., &amp; Hummelshøj, J. S. (2019).
Network analysis of synthesizable materials discovery. Nature
Communications, 10(1), 2018.
https://doi.org/10.1038/s41467-019-10030-5</unstructured_citation>
</citation>
<citation key="brown_guacamol_2019">
<article_title>GuacaMol: Benchmarking Models for de Novo
Molecular Design</article_title>
<author>Brown</author>
<journal_title>Journal of Chemical Information and
Modeling</journal_title>
<issue>3</issue>
<volume>59</volume>
<doi>10.1021/acs.jcim.8b00839</doi>
<issn>1549-9596</issn>
<cYear>2019</cYear>
<unstructured_citation>Brown, N., Fiscato, M., Segler, M. H.
S., &amp; Vaucher, A. C. (2019). GuacaMol: Benchmarking Models for de
Novo Molecular Design. Journal of Chemical Information and Modeling,
59(3), 1096–1108.
https://doi.org/10.1021/acs.jcim.8b00839</unstructured_citation>
</citation>
<citation key="chen_universal_2022">
<article_title>A universal graph deep learning interatomic
potential for the periodic table</article_title>
<author>Chen</author>
<journal_title>Nature Computational Science</journal_title>
<issue>11</issue>
<volume>2</volume>
<doi>10.1038/s43588-022-00349-3</doi>
<issn>2662-8457</issn>
<cYear>2022</cYear>
<unstructured_citation>Chen, C., &amp; Ong, S. P. (2022). A
universal graph deep learning interatomic potential for the periodic
table. Nature Computational Science, 2(11), 718–728.
https://doi.org/10.1038/s43588-022-00349-3</unstructured_citation>
</citation>
<citation key="dunn_benchmarking_2020">
<article_title>Benchmarking materials property prediction
methods: The Matbench test set and Automatminer reference
algorithm</article_title>
<author>Dunn</author>
<journal_title>npj Computational Materials</journal_title>
<issue>1</issue>
<volume>6</volume>
<doi>10.1038/s41524-020-00406-3</doi>
<issn>2057-3960</issn>
<cYear>2020</cYear>
<unstructured_citation>Dunn, A., Wang, Q., Ganose, A., Dopp,
D., &amp; Jain, A. (2020). Benchmarking materials property prediction
methods: The Matbench test set and Automatminer reference algorithm. Npj
Computational Materials, 6(1), 1–10.
https://doi.org/10.1038/s41524-020-00406-3</unstructured_citation>
</citation>
<citation key="jain_commentary_2013">
<article_title>Commentary: The Materials Project: A
materials genome approach to accelerating materials
innovation</article_title>
<author>Jain</author>
<journal_title>APL Materials</journal_title>
<issue>1</issue>
<volume>1</volume>
<doi>10.1063/1.4812323</doi>
<cYear>2013</cYear>
<unstructured_citation>Jain, A., Ong, S. P., Hautier, G.,
Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner,
D., Ceder, G., &amp; Persson, K. A. (2013). Commentary: The Materials
Project: A materials genome approach to accelerating materials
innovation. APL Materials, 1(1), 011002.
https://doi.org/10.1063/1.4812323</unstructured_citation>
</citation>
<citation key="ong_python_2013">
<article_title>Python Materials Genomics (pymatgen): A
robust, open-source python library for materials
analysis</article_title>
<author>Ong</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>68</volume>
<doi>10.1016/j.commatsci.2012.10.028</doi>
<cYear>2013</cYear>
<unstructured_citation>Ong, S. P., Richards, W. D., Jain,
A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L.,
Persson, K. A., &amp; Ceder, G. (2013). Python Materials Genomics
(pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68, 314–319.
https://doi.org/10.1016/j.commatsci.2012.10.028</unstructured_citation>
</citation>
<citation key="palizhati_agents_2022">
<article_title>Agents for sequential learning using
multiple-fidelity data</article_title>
<author>Palizhati</author>
<journal_title>Scientific Reports</journal_title>
<issue>1</issue>
<volume>12</volume>
<doi>10.1038/s41598-022-08413-8</doi>
<issn>2045-2322</issn>
<cYear>2022</cYear>
<unstructured_citation>Palizhati, A., Torrisi, S. B., Aykol,
M., Suram, S. K., Hummelshøj, J. S., &amp; Montoya, J. H. (2022). Agents
for sequential learning using multiple-fidelity data. Scientific
Reports, 12(1), 4694.
https://doi.org/10.1038/s41598-022-08413-8</unstructured_citation>
</citation>
<citation key="polykovskiy_molecular_2020">
<article_title>Molecular sets (MOSES): A benchmarking
platform for molecular generation models</article_title>
<author>Polykovskiy</author>
<journal_title>Frontiers in Pharmacology</journal_title>
<volume>11</volume>
<doi>10.3389/fphar.2020.565644</doi>
<issn>1663-9812</issn>
<cYear>2020</cYear>
<unstructured_citation>Polykovskiy, D., Zhebrak, A.,
Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S.,
Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A.,
Johansson, S., Chen, H., Nikolenko, S., Aspuru-Guzik, A., &amp;
Zhavoronkov, A. (2020). Molecular sets (MOSES): A benchmarking platform
for molecular generation models. Frontiers in Pharmacology, 11.
https://doi.org/10.3389/fphar.2020.565644</unstructured_citation>
</citation>
<citation key="ren_invertible_2022">
<article_title>An invertible crystallographic representation
for general inverse design of inorganic crystals with targeted
properties</article_title>
<author>Ren</author>
<journal_title>Matter</journal_title>
<issue>1</issue>
<volume>5</volume>
<doi>10.1016/j.matt.2021.11.032</doi>
<issn>2590-2385</issn>
<cYear>2022</cYear>
<unstructured_citation>Ren, Z., Tian, S. I. P., Noh, J.,
Oviedo, F., Xing, G., Li, J., Liang, Q., Zhu, R., Aberle, A. G., Sun,
S., Wang, X., Liu, Y., Li, Q., Jayavelu, S., Hippalgaonkar, K., Jung,
Y., &amp; Buonassisi, T. (2022). An invertible crystallographic
representation for general inverse design of inorganic crystals with
targeted properties. Matter, 5(1), 314–335.
https://doi.org/10.1016/j.matt.2021.11.032</unstructured_citation>
</citation>
<citation key="spek_checkcif_2020">
<article_title>checkCIF validation ALERTS: What they mean
and how to respond</article_title>
<author>Spek</author>
<journal_title>Acta Crystallographica Section E
Crystallographic Communications</journal_title>
<issue>1</issue>
<volume>76</volume>
<doi>10.1107/S2056989019016244</doi>
<issn>2056-9890</issn>
<cYear>2020</cYear>
<unstructured_citation>Spek, A. L. (2020). checkCIF
validation ALERTS: What they mean and how to respond. Acta
Crystallographica Section E Crystallographic Communications, 76(1),
1–11. https://doi.org/10.1107/S2056989019016244</unstructured_citation>
</citation>
<citation key="tshitoyan_unsupervised_2019">
<article_title>Unsupervised word embeddings capture latent
knowledge from materials science literature</article_title>
<author>Tshitoyan</author>
<journal_title>Nature</journal_title>
<issue>7763</issue>
<volume>571</volume>
<doi>10.1038/s41586-019-1335-8</doi>
<issn>0028-0836</issn>
<cYear>2019</cYear>
<unstructured_citation>Tshitoyan, V., Dagdelen, J., Weston,
L., Dunn, A., Rong, Z., Kononova, O., Persson, K. A., Ceder, G., &amp;
Jain, A. (2019). Unsupervised word embeddings capture latent knowledge
from materials science literature. Nature, 571(7763), 95–98.
https://doi.org/10.1038/s41586-019-1335-8</unstructured_citation>
</citation>
<citation key="xie_crystal_2022">
<article_title>Crystal Diffusion Variational Autoencoder for
Periodic Material Generation</article_title>
<author>Xie</author>
<journal_title>arXiv:2110.06197 [cond-mat,
physics:physics]</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Xie, T., Fu, X., Ganea, O.-E.,
Barzilay, R., &amp; Jaakkola, T. (2022). Crystal Diffusion Variational
Autoencoder for Periodic Material Generation. arXiv:2110.06197
[Cond-Mat, Physics:physics].
https://arxiv.org/abs/2110.06197</unstructured_citation>
</citation>
<citation key="zhao_high-throughput_2021">
<article_title>High-throughput discovery of novel cubic
crystal materials using deep generative neural networks</article_title>
<author>Zhao</author>
<journal_title>Advanced Science</journal_title>
<issue>20</issue>
<volume>8</volume>
<doi>10.1002/advs.202100566</doi>
<issn>2198-3844</issn>
<cYear>2021</cYear>
<unstructured_citation>Zhao, Y., Al-Fahdi, M., Hu, M.,
Siriwardane, E. M., Song, Y., Nasiri, A., &amp; Hu, J. (2021).
High-throughput discovery of novel cubic crystal materials using deep
generative neural networks. Advanced Science, 8(20), 2100566.
https://doi.org/10.1002/advs.202100566</unstructured_citation>
</citation>
<citation key="choudhary_large_2023">
<article_title>Large Scale Benchmark of Materials Design
Methods</article_title>
<author>Choudhary</author>
<doi>10.48550/arXiv.2306.11688</doi>
<cYear>2023</cYear>
<unstructured_citation>Choudhary, K., Wines, D., Li, K.,
Garrity, K. F., Gupta, V., Romero, A. H., Krogel, J. T., Saritas, K.,
Fuhr, A., Ganesh, P., Kent, P. R. C., Yan, K., Lin, Y., Ji, S.,
Blaiszik, B., Reiser, P., Friederich, P., Agrawal, A., Tiwary, P., …
Tavazza, F. (2023). Large Scale Benchmark of Materials Design Methods
(No. arXiv:2306.11688). arXiv.
https://doi.org/10.48550/arXiv.2306.11688</unstructured_citation>
</citation>
<citation key="riebesell_matbench_2024">
<article_title>Matbench Discovery – A framework to evaluate
machine learning crystal stability predictions</article_title>
<author>Riebesell</author>
<doi>10.48550/arXiv.2308.14920</doi>
<cYear>2024</cYear>
<unstructured_citation>Riebesell, J., Goodall, R. E. A.,
Benner, P., Chiang, Y., Deng, B., Lee, A. A., Jain, A., &amp; Persson,
K. A. (2024). Matbench Discovery – A framework to evaluate machine
learning crystal stability predictions (No. arXiv:2308.14920). arXiv.
https://doi.org/10.48550/arXiv.2308.14920</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.05618/10.21105.joss.05618.pdf
Binary file not shown.
Loading