-
Notifications
You must be signed in to change notification settings - Fork 134
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add data generation script for nested field
Signed-off-by: Heemin Kim <[email protected]>
- Loading branch information
Showing
2 changed files
with
295 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,294 @@ | ||
# Copyright OpenSearch Contributors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
""" | ||
Script builds complex dataset with additional attributes from exiting dataset that has only vectors. | ||
Additional attributes are predefined in the script: color, taste, age, and parent doc id. Only HDF5 format of vector dataset is supported. | ||
Output dataset file will have additional dataset 'attributes' with multiple columns, each column corresponds to one attribute | ||
from an attribute set, and value is generated at random, e.g.: | ||
0: green None 71 1 | ||
1: green bitter 28 1 | ||
2: green bitter 28 1 | ||
3: green bitter 28 2 | ||
... | ||
there is no explicit index reference in 'attributes' dataset, index of the row corresponds to a document id. | ||
For instance, in example above two rows of fields mapped to documents with ids '0' and '1'. | ||
The parend doc ids are assigned in non-decreasing order. | ||
If 'generate_filters' flag is set script generates additional dataset of neighbours (ground truth). | ||
Output is a new file with three dataset each of which corresponds to a certain type of query. | ||
Dataset name neighbour_nested is a ground truth for query without filtering. | ||
Dataset name neighbour_filtered_relaxed is a ground truth for query with filtering of (30 <= age <= 70) or color in ["green", "blue", "yellow"] or taste in ["sweet"] | ||
Dataset name neighbour_filtered_restrictive is a ground truth for query with filtering of (30 <= age <= 60) and color in ["green", "blue"] and taste in ["bitter"] | ||
Each dataset has rows with array of integers, where integer corresponds to | ||
a document id from original dataset with additional fields. | ||
Example of script usage: | ||
create new hdf5 file with attribute dataset | ||
add-parent-doc-id-to-dataset.py ~/dev/opensearch/k-NN/benchmarks/perf-tool/dataset/data.hdf5 ~/dev/opensearch/datasets/data-nested.hdf5 | ||
""" | ||
import getopt | ||
import multiprocessing | ||
import random | ||
import sys | ||
from multiprocessing import Process | ||
from typing import cast | ||
import traceback | ||
|
||
import h5py | ||
import numpy as np | ||
|
||
|
||
class MyVector: | ||
def __init__(self, vector, id, color=None, taste=None, age=None, parent_id=None): | ||
self.vector = vector | ||
self.id = id | ||
self.age = age | ||
self.color = color | ||
self.taste = taste | ||
self.parent_id = parent_id | ||
|
||
def apply_restricted_filter(self): | ||
return (30 <= self.age <= 60) and self.color in ["green", "blue"] and self.taste in ["bitter"] | ||
|
||
def apply_relaxed_filter(self): | ||
return (30 <= self.age <= 70) or self.color in ["green", "blue", "yellow"] or self.taste in ["sweet"] | ||
|
||
def __str__(self): | ||
return f'Vector : {self.vector}, id : {self.id}, color: {self.color}, taste: {self.taste}, age: {self.age}, parent_id: {self.parent_id}\n' | ||
|
||
def __repr__(self): | ||
return f'Vector : {self.vector}, id : {self.id}, color: {self.color}, taste: {self.taste}, age: {self.age}, parent_id: {self.parent_id}\n' | ||
|
||
class HDF5DataSet: | ||
def __init__(self, file_path, key): | ||
self.file_name = file_path | ||
self.file = h5py.File(self.file_name) | ||
self.key = key | ||
self.data = cast(h5py.Dataset, self.file[key]) | ||
self.metadata = None | ||
self.metadata = cast(h5py.Dataset, self.file["attributes"]) if key == "train" else None | ||
print(f'Keys in the file are {self.file.keys()}') | ||
|
||
def read(self, start, end=None): | ||
if end is None: | ||
end = self.data.len() | ||
values = cast(np.ndarray, self.data[start:end]) | ||
metadata = cast(list, self.metadata[start:end]) if self.metadata is not None else None | ||
if metadata is not None: | ||
print(metadata) | ||
vectors = [] | ||
i = 0 | ||
for value in values: | ||
if self.metadata is None: | ||
vector = MyVector(value, i) | ||
else: | ||
# color, taste, age, and parent id | ||
vector = MyVector(value, i, str(metadata[i][0].decode()), str(metadata[i][1].decode()), | ||
int(metadata[i][2]), int(metadata[i][3])) | ||
vectors.append(vector) | ||
i = i + 1 | ||
return vectors | ||
|
||
def read_neighbors(self, start, end): | ||
return cast(np.ndarray, self.data[start:end]) | ||
|
||
def size(self): | ||
return self.data.len() | ||
|
||
def close(self): | ||
self.file.close() | ||
|
||
class _Dataset: | ||
def run(self, source_path, target_path) -> None: | ||
# Add attributes | ||
print(f'Adding attributes started.') | ||
with h5py.File(source_path, "r") as in_file: | ||
out_file = h5py.File(target_path, "w") | ||
possible_colors = ['red', 'green', 'yellow', 'blue', None] | ||
possible_tastes = ['sweet', 'salty', 'sour', 'bitter', None] | ||
max_age = 100 | ||
min_field_size = 1000 | ||
max_field_size = 10001 | ||
|
||
# Copy train and test data | ||
for key in in_file.keys(): | ||
if key not in ['test', 'train']: | ||
continue | ||
out_file.create_dataset(key, data=in_file[key][()]) | ||
|
||
# Generate attributes | ||
attributes = [] | ||
field_size = random.randint(min_field_size, max_field_size) | ||
parent_id = 1 | ||
field_count = 0 | ||
for i in range(len(in_file['train'])): | ||
attr = [random.choice(possible_colors), random.choice(possible_tastes), | ||
random.randint(0, max_age + 1), parent_id] | ||
attributes.append(attr) | ||
field_count += 1 | ||
if field_count >= field_size: | ||
field_size = random.randint(min_field_size, max_field_size) | ||
field_count = 0 | ||
parent_id += 1 | ||
out_file.create_dataset('attributes', (len(attributes), 4), 'S10', data=attributes) | ||
|
||
out_file.flush() | ||
out_file.close() | ||
|
||
print(f'Adding attributes completed.') | ||
|
||
|
||
# Calculate ground truth | ||
print(f'Calculating ground truth started.') | ||
cpus = multiprocessing.cpu_count() | ||
total_clients = min(8, cpus) # 1 # 10 | ||
hdf5Data_train = HDF5DataSet(target_path, "train") | ||
train_vectors = hdf5Data_train.read(0, 1000000) | ||
hdf5Data_train.close() | ||
print(f'Train vector size: {len(train_vectors)}') | ||
|
||
hdf5Data_test = HDF5DataSet(target_path, "test") | ||
total_queries = 10000 # 10000 | ||
dis = [] * total_queries | ||
|
||
for i in range(total_queries): | ||
dis.insert(i, []) | ||
|
||
queries_per_client = int(total_queries / total_clients) | ||
if queries_per_client == 0: | ||
queries_per_client = total_queries | ||
|
||
processes = [] | ||
test_vectors = hdf5Data_test.read(0, total_queries) | ||
hdf5Data_test.close() | ||
tasks_that_are_done = multiprocessing.Queue() | ||
for client in range(total_clients): | ||
start_index = int(client * queries_per_client) | ||
if start_index + queries_per_client <= total_queries: | ||
end_index = int(start_index + queries_per_client) | ||
else: | ||
end_index = total_queries - start_index | ||
|
||
print(f'Start Index: {start_index}, end Index: {end_index}') | ||
print(f'client is : {client}') | ||
p = Process(target=queryTask, args=( | ||
train_vectors, test_vectors, start_index, end_index, client, total_queries, tasks_that_are_done)) | ||
processes.append(p) | ||
p.start() | ||
if end_index >= total_queries: | ||
print(f'Exiting end Index : {end_index} total_queries: {total_queries}') | ||
break | ||
|
||
# wait for tasks to be completed | ||
print('Waiting for all tasks to be completed') | ||
j = 0 | ||
# This is required because threads can hang if the data sent from the sub process increases by a certain limit | ||
# https://stackoverflow.com/questions/21641887/python-multiprocessing-process-hangs-on-join-for-large-queue | ||
while j < total_queries: | ||
while not tasks_that_are_done.empty(): | ||
calculatedDis = tasks_that_are_done.get() | ||
i = 0 | ||
for d in calculatedDis: | ||
if d: | ||
print("Dis is not null") | ||
dis[i] = d | ||
j = j + 1 | ||
i = i + 1 | ||
|
||
for p in processes: | ||
if p.is_alive(): | ||
p.join() | ||
else: | ||
print("Process was not alive hence shutting down") | ||
|
||
data_set_file = h5py.File(target_path, "a") | ||
for type in ['nested', 'relaxed', 'restricted']: | ||
results = [] | ||
for d in dis: | ||
r = [] | ||
for i in range(min(10000, len(d[type]))): | ||
r.append(d[type][i]['id']) | ||
results.append(r) | ||
|
||
|
||
data_set_file.create_dataset("neighbour_" + type, (len(results), len(results[0])), data=results) | ||
data_set_file.flush() | ||
data_set_file.close() | ||
|
||
def calculateL2Distance(point1, point2): | ||
return np.linalg.norm(point1 - point2) | ||
|
||
|
||
def queryTask(train_vectors, test_vectors, startIndex, endIndex, process_number, total_queries, tasks_that_are_done): | ||
print(f'Starting Process number : {process_number}') | ||
all_distances = [] * total_queries | ||
for i in range(total_queries): | ||
all_distances.insert(i, {}) | ||
try: | ||
test_vectors = test_vectors[startIndex:endIndex] | ||
i = startIndex | ||
for test in test_vectors: | ||
distances = [] | ||
parent_ids = {} | ||
values = {} | ||
for value in train_vectors: | ||
parent_ids[value.id] = value.parent_id | ||
values[value.id] = value | ||
distances.append({ | ||
"dis": calculateL2Distance(test.vector, value.vector), | ||
"id": value.id | ||
}) | ||
|
||
distances.sort(key=lambda vector: vector['dis']) | ||
seen_set_nested = set() | ||
seen_set_restricted = set() | ||
seen_set_relaxed = set() | ||
nested = [] | ||
restricted = [] | ||
relaxed = [] | ||
for sub_i in range(len(distances)): | ||
id = distances[sub_i]['id'] | ||
# Check if the number has been seen before | ||
if len(nested) < 1000 and parent_ids[id] not in seen_set_nested: | ||
# If not seen before, mark it as seen | ||
seen_set_nested.add(parent_ids[id]) | ||
nested.append(distances[sub_i]) | ||
if len(restricted) < 1000 and parent_ids[id] not in seen_set_restricted and values[id].apply_restricted_filter(): | ||
seen_set_restricted.add(parent_ids[id]) | ||
restricted.append(distances[sub_i]) | ||
if len(relaxed) < 1000 and parent_ids[id] not in seen_set_relaxed and values[id].apply_relaxed_filter(): | ||
seen_set_relaxed.add(parent_ids[id]) | ||
relaxed.append(distances[sub_i]) | ||
|
||
all_distances[i]['nested'] = nested | ||
all_distances[i]['restricted'] = restricted | ||
all_distances[i]['relaxed'] = relaxed | ||
print(f"Process {process_number} queries completed: {i + 1 - startIndex}, queries left: {endIndex - i - 1}") | ||
i = i + 1 | ||
except: | ||
print( | ||
f"Got exception while running the thread: {process_number} with startIndex: {startIndex} endIndex: {endIndex} ") | ||
traceback.print_exc() | ||
tasks_that_are_done.put(all_distances) | ||
print(f'Exiting Process number : {process_number}') | ||
|
||
|
||
def main(argv): | ||
opts, args = getopt.getopt(argv, "") | ||
in_file_path = args[0] | ||
out_file_path = args[1] | ||
|
||
worker = _Dataset() | ||
worker.run(in_file_path, out_file_path) | ||
|
||
if __name__ == "__main__": | ||
main(sys.argv[1:]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters