Skip to content

Commit

Permalink
OpenXLA-specific changes
Browse files Browse the repository at this point in the history
  • Loading branch information
Aliia Khasanova authored and khasanovaa committed Jul 3, 2024
1 parent 3ffa8d4 commit 4fc7094
Show file tree
Hide file tree
Showing 36 changed files with 2,112 additions and 74 deletions.
887 changes: 887 additions & 0 deletions BUILD

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion bin/RegisterTritonDialects.h
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#pragma once
#include "third_party/nvidia/include/Dialect/NVGPU/IR/Dialect.h"
#include "Dialect/NVGPU/IR/Dialect.h"
#include "triton/Dialect/Triton/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include "triton/Dialect/TritonNvidiaGPU/IR/Dialect.h"
Expand Down
3 changes: 2 additions & 1 deletion lib/Conversion/TritonGPUToLLVM/ElementwiseOpToLLVM.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,8 @@ SmallVector<Value> reorderValues(const SmallVector<Value> &values, Type inType,
auto ouEltTy = ouTensorTy.getElementType();
if (inBitWidth == ouBitWidth)
return values;
if (inBitWidth == 16 && ouBitWidth == 32) {
if ((inBitWidth == 16 && ouBitWidth == 32) ||
(inBitWidth == 32 && ouBitWidth == 16)) {
SmallVector<Value> ret;
for (unsigned i = 0; i < values.size(); i += 8) {
ret.push_back(values[i]);
Expand Down
3 changes: 2 additions & 1 deletion lib/Conversion/TritonGPUToLLVM/ViewOpToLLVM.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,9 @@ struct ArithConstantSplatOpConversion
// LLVM IR.
if (type::isFloat8(elemType))
elemType = rewriter.getIntegerType(8);
auto constOp = rewriter.create<LLVM::ConstantOp>(loc, elemType, val);
auto typeConverter = getTypeConverter();
auto constOp = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(elemType), val);
auto llStruct = SplatOpConversion::convertSplatLikeOp(
elemType, op.getType(), constOp, typeConverter, rewriter, loc);
rewriter.replaceOp(op, llStruct);
Expand Down
5 changes: 5 additions & 0 deletions lib/Dialect/TritonGPU/IR/Dialect.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2709,6 +2709,11 @@ struct CanonicalizeConvertFromAlloc
auto convert = op.getSrc().getDefiningOp<ConvertLayoutOp>();
if (!convert)
return failure();
// LocalAllocOp lowering doesn't support going from DotOperandEncoding
// to SharedEncoding, so we want to keep this layout conversion.
if (mlir::isa<triton::gpu::DotOperandEncodingAttr>(
convert.getSrc().getType().getEncoding()))
return failure();
rewriter.replaceOpWithNewOp<triton::gpu::LocalAllocOp>(
op, op->getResult(0).getType(), convert.getSrc());
return mlir::success();
Expand Down
26 changes: 25 additions & 1 deletion lib/Dialect/TritonGPU/Transforms/AccelerateMatmul.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ namespace {
static int getMMAVersionSafe(int computeCapability, DotOp op) {
// List supported mma version in order of preference.
SmallVector<int> versionsSupported;
if (computeCapability < 75) {
if (computeCapability < 80) {
versionsSupported = {1};
} else if (computeCapability < 90) {
versionsSupported = {2};
Expand Down Expand Up @@ -153,6 +153,21 @@ static Value getSharedMemoryMMAOperand(Value v, mlir::PatternRewriter &rewriter,
auto newType = MemDescType::get(argType.getShape(), argType.getElementType(),
newLayout, SharedMemorySpace);
rewriter.setInsertionPointAfterValue(arg);

// LocalAllocOp lowering doesn't support going from DotOperandEncoding
// to SharedEncoding.
if (auto dotOpEnc = mlir::dyn_cast<DotOperandEncodingAttr>(
argType.getEncoding())) {
// Create a layout conversion from DotOperandEncoding to BlockedEncoding
// then pass it to the LocalAllocOp.
auto newArgType = RankedTensorType::get(
argType.getShape(), argType.getElementType(), dotOpEnc.getParent());
auto dotOperandToBlockedCvt =
rewriter.create<ConvertLayoutOp>(arg.getLoc(), newArgType, arg);
return rewriter.create<LocalAllocOp>(arg.getLoc(), newType,
dotOperandToBlockedCvt);
}

return rewriter.create<LocalAllocOp>(arg.getLoc(), newType, arg);
}

Expand All @@ -162,6 +177,15 @@ class BlockedToMMA : public mlir::OpRewritePattern<DotOp> {
mutable llvm::DenseMap<Operation *, unsigned> dotOpInstNs;

static bool bwdFilter(Operation *op) {
// Dot operand layout assignment to Predicates are not currently supported
// during lowering from TritonGPU to LLVM in Triton for MMA cases. This
// condition limits visibility of the original bit-width so that predicate
// are not considered, hence, kwidth can never be = 32.
if (isa<arith::UIToFPOp>(op)) {
Type srcType = getElementTypeOrSelf(op->getOperand(0));
if (srcType.isInteger(1))
return false;
}
return op->getNumOperands() == 1 &&
(isa<FpToFpOp, BitcastOp, ConvertLayoutOp>(op) ||
isPureUnaryInlineAsm(op) ||
Expand Down
17 changes: 16 additions & 1 deletion lib/Dialect/TritonGPU/Transforms/OptimizeDotOperands.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,8 @@ class HoistLayoutConversion : public OpRewritePattern<ConvertLayoutOp> {
PatternRewriter &rewriter) const override {
// Only consider conversions to dot operand.
auto cvtTy = cast<RankedTensorType>(cvt.getType());
if (!isa<DotOperandEncodingAttr>(cvtTy.getEncoding()))
auto dotOpEnc = dyn_cast<DotOperandEncodingAttr>(cvtTy.getEncoding());
if (!dotOpEnc)
return failure();

auto src = cvt.getSrc().getDefiningOp();
Expand All @@ -126,6 +127,12 @@ class HoistLayoutConversion : public OpRewritePattern<ConvertLayoutOp> {
[](Type ty) { return isa<RankedTensorType>(ty); }))
return failure();

// Quick handling to fix loading issues when computing the original
// bitwidth is unable to realize that there is a mixed-precision dot
// (hence kWidth = 1) but wants to hoist through the type conversion.
if (isa<arith::ExtFOp>(src) && dotOpEnc.getKWidth() == 1)
return failure();

// Only consider custom conversions or arith ops.
// TODO(jlebar): Is this too restrictive?
if (!isa<FpToFpOp, BitcastOp>(src) && !isPureUnaryInlineAsm(src) &&
Expand All @@ -138,6 +145,14 @@ class HoistLayoutConversion : public OpRewritePattern<ConvertLayoutOp> {
if (isa<arith::TruncIOp, arith::TruncFOp, arith::SelectOp>(src))
return failure();

// Don't hoist through u1 -> fp casts as they aren't supported in
// ElementwiseOpToLLVM::reorderValues().
if (isa<arith::UIToFPOp>(src)) {
Type srcType = getElementTypeOrSelf(src->getOperand(0));
if (srcType.isInteger(1))
return failure();
}

// Check that the conversion is transitively dependent on a load, and all
// operations between the load and the conversion are layout preserving.
//
Expand Down
17 changes: 16 additions & 1 deletion lib/Dialect/TritonGPU/Transforms/Prefetch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -140,8 +140,14 @@ Value Prefetcher::generatePrefetch(Value v, unsigned opIdx, bool isPrologue,
type.getMemorySpace()),
v, offsetsVal);

// We need to assign kwidth to zero in the case where the parent layout is
// Blocked, otherwise the verifier emits a failure. The parent layout is
// Blocked only when Tensor Cores are disabled.
int kwidth = dyn_cast<triton::gpu::BlockedEncodingAttr>(dotEncoding)
? 0
: prefetchWidth / 8;
auto dotOperandEnc = triton::gpu::DotOperandEncodingAttr::get(
builder.getContext(), opIdx, dotEncoding, prefetchWidth / 8);
builder.getContext(), opIdx, dotEncoding, kwidth);
Value prefetchSlice = builder.create<triton::gpu::LocalLoadOp>(
v.getLoc(), RankedTensorType::get(shape, elementType, dotOperandEnc),
newSmem);
Expand Down Expand Up @@ -189,6 +195,15 @@ LogicalResult Prefetcher::initialize() {
break;
if (!op->getResult(0).hasOneUse())
break;
// Similar to issues faced in HoistLayoutConversion pattern in
// OptimizeDotOperands.cpp, we can't propagate through type casts from
// predicates as they aren't supported in Triton when encoded with dot_op
// layout.
if (isa<arith::UIToFPOp>(op)) {
Type srcType = getElementTypeOrSelf(op->getOperand(0));
if (srcType.isInteger(1))
break;
}
rets.push_back(op->getOperand(0));
if (auto cvt = dyn_cast<triton::gpu::LocalLoadOp>(op)) {
foundConvertFromShared = true;
Expand Down
46 changes: 1 addition & 45 deletions lib/Dialect/TritonGPU/Transforms/RemoveLayoutConversions.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -138,11 +138,6 @@ class LayoutRematerialization {
ConvertLayoutOp convertOp);

private:
void updateRematMapping(SmallVector<std::tuple<Value, Value>> &values);
// Existing tuples of (value, layout) that needs to be updated when recreating
// scf ops. This prevents keeping track of Values that have been delete when
// rewriting slices.
DenseMap<Value, Attribute> mappedValues;
// map of the values remat based on encoding.
DenseMap<std::pair<Value, Attribute>, Value> rematMapping;
// DenseMap<std::pair<Operation*, Attribute>, Operation*>
Expand All @@ -154,7 +149,6 @@ void LayoutRematerialization::addRematValue(Value old, Attribute encoding,
Value newV) {
LDBG("addRematValue " << old << " encoding " << encoding << " " << newV);
rematMapping[{old, encoding}] = newV;
mappedValues[old] = encoding;
}

// Remove unneeded values now that we are done with the rematMapping.
Expand Down Expand Up @@ -807,31 +801,6 @@ bool canBeRemat(Operation *op) {
return true;
}

void LayoutRematerialization::updateRematMapping(
SmallVector<std::tuple<Value, Value>> &values) {
for (auto [old, newV] : values) {
auto it = mappedValues.find(old);
if (it != mappedValues.end()) {
Attribute encoding = it->second;
auto rematIt = rematMapping.find({old, it->second});
assert(rematIt != rematMapping.end());
Value replacedValue = rematIt->second;
rematMapping.erase(rematIt);
mappedValues.erase(it);
// Loop through the replacement value to find the new version of remat
// value. This should be okay as the number of values should be small.
for (auto [before, after] : values) {
if (before == replacedValue) {
replacedValue = after;
break;
}
}
rematMapping[{newV, encoding}] = replacedValue;
mappedValues[newV] = encoding;
}
}
}

void LayoutRematerialization::rewriteSlice(SetVector<Value> &slice,
DenseMap<Value, Attribute> &layout,
ConvertLayoutOp convertOp,
Expand All @@ -844,14 +813,6 @@ void LayoutRematerialization::rewriteSlice(SetVector<Value> &slice,
// for/yield to fall out of sync
SetVector<Value> valuesWithExistingRemat;
for (Value v : slice) {
auto layoutIt = layout.find(v);
assert(layoutIt != layout.end());
// If we already have a remat value for this value, use it.
if (hasRematValue(v, layoutIt->second)) {
mapping.map(v, getRematValue(v, layoutIt->second));
valuesWithExistingRemat.insert(v);
continue;
}
if (v.getDefiningOp()) {
opsToRewrite.insert(v.getDefiningOp());
if (auto ifOp = v.getDefiningOp<scf::IfOp>()) {
Expand Down Expand Up @@ -941,8 +902,7 @@ void LayoutRematerialization::rewriteSlice(SetVector<Value> &slice,
if (slice.count(res)) {
// Why can't we use res instead of ifOp.getResult(oldIdx)?
mapping.map(ifOp.getResult(oldIdx), newIfOp.getResult(newIdx));
addRematValue(ifOp.getResult(oldIdx), layout[res],
newIfOp.getResult(newIdx));
addRematValue(res, layout[res], newIfOp.getResult(newIdx));
++newIdx;
}
++oldIdx;
Expand Down Expand Up @@ -973,8 +933,6 @@ void LayoutRematerialization::rewriteSlice(SetVector<Value> &slice,
auto cvt = builder.create<ConvertLayoutOp>(op->getLoc(), newType,
newOp->getResult(0));
mapping.map(op->getResult(0), cvt.getResult());
addRematValue(op->getResult(0), layout[op->getResult(0)],
cvt.getResult());
continue;
}
Operation *newOp = builder.clone(*op, mapping);
Expand All @@ -986,14 +944,12 @@ void LayoutRematerialization::rewriteSlice(SetVector<Value> &slice,
cast<RankedTensorType>(old.getType()).getShape(),
cast<RankedTensorType>(old.getType()).getElementType(), it->second);
newV.setType(newType);
addRematValue(old, it->second, newV);
}
}
// Check mapping and see if there are existing convertOps on the old Argument
convertOp.replaceAllUsesWith(mapping.lookup(convertOp.getSrc()));
opToDelete.insert(convertOp);

updateRematMapping(replacements);
for (auto &kv : replacements) {
builder.replaceAllUsesWith(std::get<0>(kv), std::get<1>(kv));
}
Expand Down
76 changes: 76 additions & 0 deletions python/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# NOTE: Do not depend on any targets from this directory,
# but use //third_party/py/triton instead.

load("@pybind11_bazel//:build_defs.bzl", "pybind_extension")

package(
default_applicable_licenses = ["//:license"],
default_visibility = [
"//third_party/py/triton:__pkg__",
"@triton//python:__subpackages__",
],
)

cc_library(
name = "passes",
hdrs = ["src/passes.h"],
includes = ["src"],
visibility = ["@triton//third_party:__subpackages__"],
)

pybind_extension(
name = "libtriton",
srcs = [
"src/interpreter.cc",
"src/ir.cc",
"src/llvm.cc",
"src/main.cc",
"src/passes.cc",
],
copts = ["-DTRITON_BACKENDS_TUPLE=(nvidia)"],
deps = [
":passes",
"@llvm-project//llvm:Core",
"@llvm-project//llvm:IPO",
"@llvm-project//llvm:IRReader",
"@llvm-project//llvm:InstCombine",
"@llvm-project//llvm:Linker",
"@llvm-project//llvm:MC",
"@llvm-project//llvm:Passes",
"@llvm-project//llvm:Support",
"@llvm-project//llvm:Target",
"@llvm-project//mlir:BuiltinToLLVMIRTranslation",
"@llvm-project//mlir:BytecodeWriter",
"@llvm-project//mlir:ControlFlowDialect",
"@llvm-project//mlir:ConversionPasses",
"@llvm-project//mlir:IR",
"@llvm-project//mlir:IndexDialect",
"@llvm-project//mlir:LLVMDialect",
"@llvm-project//mlir:LLVMToLLVMIRTranslation",
"@llvm-project//mlir:NVVMToLLVMIRTranslation",
"@llvm-project//mlir:Parser",
"@llvm-project//mlir:Pass",
"@llvm-project//mlir:Support",
"@llvm-project//mlir:ToLLVMIRTranslation",
"@llvm-project//mlir:Transforms",
"//:TritonAnalysis",
"//:TritonDialects",
"//:TritonGPUToLLVM",
"//:TritonGPUTransforms",
"//:TritonHSACO",
"//:TritonLLVMIR",
"//:TritonNvidiaGPUTransforms",
"//:TritonPTX",
"//:TritonToTritonGPU",
"//:TritonTools",
"//:TritonTransforms",
"@triton//third_party/nvidia:triton_nvidia",
],
)

filegroup(
name = "files",
srcs = glob(
include = ["triton/**/*.py"],
),
)
4 changes: 3 additions & 1 deletion python/src/ir.cc
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#include <pybind11/functional.h>
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

Expand Down Expand Up @@ -1645,8 +1645,10 @@ void init_triton_ir(py::module &&m) {
return storage.back().c_str();
});

#ifndef NDEBUG
::llvm::DebugFlag = true;
::llvm::setCurrentDebugTypes(debugTypes.data(), debugTypes.size());
#endif
}

bool haveTiming = ::triton::tools::getBoolEnv("MLIR_ENABLE_TIMING");
Expand Down
26 changes: 26 additions & 0 deletions python/test/regression/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
load("//third_party/py/pytest:pytest_defs.bzl", "pytest_multi_tests")

package(
default_applicable_licenses = ["//:license"],
)

pytest_multi_tests(
name = "tests",
size = "large",
srcs = ["conftest.py"],
shard_count = 10,
tags = [
"config-cuda-only",
"requires-gpu-sm80",
],
tests = glob(
include = ["test_*.py"],
exclude = [
"test_performance.py", #TODO(b/321005767): fix failing test
],
),
deps = [
"//third_party/py/torch:pytorch",
"//third_party/py/triton",
],
)
12 changes: 12 additions & 0 deletions python/test/regression/conftest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# content of conftest.py

import pytest


def pytest_addoption(parser):
parser.addoption("--device", action="store", default='cuda')


@pytest.fixture
def device(request):
return request.config.getoption("--device")
Loading

0 comments on commit 4fc7094

Please sign in to comment.