forked from ServiceNow/BrowserGym
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
13 changed files
with
3,195 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
browsergym-core==0.8.1 | ||
tiktoken>=0.4 | ||
dataclasses-json |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,12 +1,13 @@ | ||
from browsergym.core.action.base import AbstractActionSet | ||
from browsergym.core.action.highlevel import HighLevelActionSet | ||
from browsergym.core.action.python import PythonActionSet | ||
from browsergym.experiments.agent import Agent, AgentInfo | ||
from browsergym.experiments.benchmark import Benchmark, HighLevelActionSetArgs | ||
from browsergym.experiments.loop import ( | ||
AbstractAgentArgs, | ||
EnvArgs, | ||
ExpArgs, | ||
AbstractAgentArgs, | ||
ExpResult, | ||
StepInfo, | ||
StepTimestamps, | ||
) | ||
from browsergym.core.action.base import AbstractActionSet | ||
from browsergym.core.action.highlevel import HighLevelActionSet | ||
from browsergym.core.action.python import PythonActionSet |
376 changes: 376 additions & 0 deletions
376
browsergym/experiments/src/browsergym/experiments/benchmark.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,376 @@ | ||
import fnmatch | ||
import io | ||
import logging | ||
import pkgutil | ||
from dataclasses import dataclass, field | ||
from typing import Literal, Optional | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from dataclasses_json import DataClassJsonMixin, config | ||
|
||
from browsergym.core.action.highlevel import HighLevelActionSet | ||
from browsergym.experiments.loop import SEED_MAX, EnvArgs | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
@dataclass | ||
class HighLevelActionSetArgs(DataClassJsonMixin): | ||
subsets: list[HighLevelActionSet.ActionSubset] | ||
# custom_actions: list[callable] | None # non-serializable argument, not supported | ||
multiaction: bool | ||
strict: bool | ||
retry_with_force: bool | ||
demo_mode: Literal["off", "default", "all_blue", "only_visible_elements"] | ||
|
||
def make_action_set(self): | ||
return HighLevelActionSet( | ||
subsets=self.subsets, | ||
custom_actions=None, | ||
multiaction=self.multiaction, | ||
strict=self.strict, | ||
retry_with_force=self.retry_with_force, | ||
demo_mode=self.demo_mode, | ||
) | ||
|
||
|
||
@dataclass | ||
class Benchmark(DataClassJsonMixin): | ||
name: str | ||
high_level_action_set_args: HighLevelActionSetArgs | ||
env_args_list: list[EnvArgs] | ||
task_metadata: Optional[pd.DataFrame] = field( | ||
default_factory=lambda: None, | ||
metadata=config( | ||
encoder=lambda df: df.to_dict(orient="records") if df is not None else None, | ||
decoder=lambda items: pd.DataFrame(items) if items is not None else None, | ||
), | ||
) | ||
|
||
def __post_init__(self): | ||
# if no metadata is present, generate a dataframe with single "task_name" column | ||
if self.task_metadata is None: | ||
unique_task_names = list(set([env_args.task_name for env_args in self.env_args_list])) | ||
self.task_metadata = pd.DataFrame( | ||
[{"task_name": task_name} for task_name in unique_task_names] | ||
) | ||
# make sure all tasks in env_args are in the metadata | ||
metadata_tasks = list(self.task_metadata["task_name"]) | ||
assert all([env_args.task_name in metadata_tasks for env_args in self.env_args_list]) | ||
|
||
def subset_from_split(self, split: Literal["train", "eval", "test"]): | ||
split_column = "split" | ||
|
||
# check for a split column in metadata | ||
if not split_column in self.task_metadata.columns: | ||
raise NotImplementedError( | ||
f"This benchmark does not provide train/eval/test {split_column} (missing split column in task metadata)" | ||
) | ||
|
||
# recover the target split | ||
sub_benchmark = self.subset_from_regexp(split_column, regexp=f"^{split}$") | ||
|
||
# check that the split exists (non-empty task list) | ||
if not sub_benchmark.env_args_list: | ||
raise ValueError(f"The {split} split for this benchmark is empty.") | ||
|
||
return sub_benchmark | ||
|
||
def subset_from_glob(self, column, glob): | ||
subset = self.subset_from_regexp(column, regexp=fnmatch.translate(glob)) | ||
subset.name = f"{self.name}[{column}={glob}]" | ||
return subset | ||
|
||
def subset_from_regexp(self, column, regexp): | ||
# extract the filtered task_name subset | ||
task_name_subset = task_list_from_metadata(self.task_metadata, {column: regexp}) | ||
|
||
# return the sub benchmark | ||
return Benchmark( | ||
name=f"{self.name}[{column}=/{regexp}/]", | ||
high_level_action_set_args=self.high_level_action_set_args, | ||
env_args_list=[ | ||
env_args | ||
for env_args in self.env_args_list | ||
if env_args.task_name in task_name_subset | ||
], | ||
task_metadata=self.task_metadata, | ||
) | ||
|
||
|
||
def task_metadata(benchmark_name: str): | ||
return task_metadata_from_csv( | ||
io.StringIO( | ||
pkgutil.get_data(__name__, f"task_metadata/{benchmark_name}.csv").decode("utf-8") | ||
) | ||
) | ||
|
||
|
||
def task_metadata_from_csv(filepath): | ||
return pd.read_csv(filepath).fillna("") | ||
|
||
|
||
def task_list_from_metadata(metadata: pd.DataFrame, filter: dict[str, str] = {}): | ||
df = metadata | ||
# filter the desired columns (AND filter) | ||
for col_name, regex in filter.items(): | ||
col_filter = df[col_name].astype(str).str.contains(regex, regex=True) | ||
df = df[col_filter] | ||
# return only the task names | ||
return list(df["task_name"]) | ||
|
||
|
||
# These are mean as the default highlevel action set to fairly evaluate agents on each benchmark. | ||
# They are mostly arbitrary, the important thing is to evaluate different agents using the same action set for fairness. | ||
DEFAULT_HIGHLEVEL_ACTION_SET_ARGS = { | ||
# loosely from https://github.com/Farama-Foundation/miniwob-plusplus/blob/1bab0dffe34e92cc1049fe9443542029bf7e44a9/miniwob/action.py#L122 | ||
"miniwob": HighLevelActionSetArgs( | ||
subsets=["bid", "coord"], | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
# loosely from https://github.com/Farama-Foundation/miniwob-plusplus/blob/1bab0dffe34e92cc1049fe9443542029bf7e44a9/miniwob/action.py#L160 | ||
"miniwob_bid": HighLevelActionSetArgs( | ||
subsets=["bid"], | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
# loosely from https://github.com/Farama-Foundation/miniwob-plusplus/blob/1bab0dffe34e92cc1049fe9443542029bf7e44a9/miniwob/action.py#L173 | ||
"miniwob_coord": HighLevelActionSetArgs( | ||
subsets=["coord"], | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
"workarena_l1": HighLevelActionSetArgs( | ||
subsets=["chat", "bid"], # no need for infeasible action | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
"workarena": HighLevelActionSetArgs( | ||
subsets=["chat", "infeas", "bid"], | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
# from https://arxiv.org/abs/2307.13854 | ||
"webarena": HighLevelActionSetArgs( | ||
subsets=["chat", "infeas", "bid", "tab", "nav"], | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
# from https://arxiv.org/abs/2401.13649 | ||
"visualwebarena": HighLevelActionSetArgs( | ||
subsets=["chat", "infeas", "bid", "tab", "nav"], | ||
multiaction=False, | ||
strict=False, | ||
retry_with_force=False, | ||
demo_mode="off", | ||
), | ||
} | ||
|
||
# all benchmarks are callables designed for lazy loading, i.e. `bench = BENCHMARKS["miniwob_all"]()` | ||
BENCHMARKS = { | ||
"miniwob_all": lambda: Benchmark( | ||
name="miniwob_all", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["miniwob"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata(metadata=task_metadata("miniwob")), | ||
max_steps=10, | ||
n_repeats=10, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("miniwob"), | ||
), | ||
"miniwob_webgum": lambda: Benchmark( | ||
name="miniwob_webgum", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["miniwob"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata( | ||
metadata=task_metadata("miniwob"), filter={"webgum_subset": "True"} | ||
), | ||
max_steps=10, | ||
n_repeats=10, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("miniwob"), | ||
), | ||
"miniwob_tiny_test": lambda: Benchmark( | ||
name="miniwob_tiny_test", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["miniwob"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=["miniwob.click-dialog", "miniwob.click-checkboxes"], | ||
max_steps=5, | ||
n_repeats=2, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("miniwob"), | ||
), | ||
"miniwob_train": lambda: Benchmark( | ||
name="miniwob_train", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["miniwob"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata( | ||
metadata=task_metadata("miniwob"), | ||
filter={"miniwob_category": "original|nodelay|debug|additional"}, | ||
), | ||
max_steps=10, | ||
n_repeats=10, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("miniwob"), | ||
), | ||
"miniwob_test": lambda: Benchmark( | ||
name="miniwob_test", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["miniwob"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata( | ||
metadata=task_metadata("miniwob"), filter={"miniwob_category": "hidden test"} | ||
), | ||
max_steps=10, | ||
n_repeats=10, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("miniwob"), | ||
), | ||
"webarena": lambda: Benchmark( | ||
name="webarena", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["webarena"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata(metadata=task_metadata("webarena")), | ||
max_steps=15, | ||
n_repeats=1, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("webarena"), | ||
), | ||
"visualwebarena": lambda: Benchmark( | ||
name="visualwebarena", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["visualwebarena"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata(metadata=task_metadata("visualwebarena")), | ||
max_steps=15, | ||
n_repeats=1, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("visualwebarena"), | ||
), | ||
"workarena_l1": lambda: Benchmark( | ||
name="workarena_l1", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["workarena_l1"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata( | ||
metadata=task_metadata("workarena"), filter={"level": "l1"} | ||
), | ||
max_steps=15, | ||
n_repeats=10, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("workarena"), | ||
), | ||
"workarena_l1_sort": lambda: Benchmark( | ||
name="workarena_l1_sort", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["workarena_l1"], | ||
env_args_list=_make_env_args_list_from_repeat_tasks( | ||
task_list=task_list_from_metadata( | ||
metadata=task_metadata("workarena"), filter={"level": "l1", "category": "list-sort"} | ||
), | ||
max_steps=15, | ||
n_repeats=10, | ||
seeds_rng=np.random.RandomState(42), | ||
), | ||
task_metadata=task_metadata("workarena"), | ||
), | ||
"workarena_l2_agent_curriculum_eval": lambda: Benchmark( | ||
name="workarena_l2_agent_curriculum_eval", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["workarena"], | ||
env_args_list=_make_env_args_list_from_workarena_curriculum( | ||
level="l2", | ||
task_category_filter=None, | ||
meta_seed=42, # meta seed for evaluation curriculum | ||
max_steps=50, | ||
curriculum_type="agent", | ||
), | ||
task_metadata=task_metadata("workarena"), | ||
), | ||
"workarena_l3_agent_curriculum_eval": lambda: Benchmark( | ||
name="workarena_l3_agent_curriculum_eval", | ||
high_level_action_set_args=DEFAULT_HIGHLEVEL_ACTION_SET_ARGS["workarena"], | ||
env_args_list=_make_env_args_list_from_workarena_curriculum( | ||
level="l3", | ||
task_category_filter=None, | ||
meta_seed=42, # meta seed for evaluation curriculum | ||
max_steps=50, | ||
curriculum_type="agent", | ||
), | ||
task_metadata=task_metadata("workarena"), | ||
), | ||
} | ||
|
||
|
||
def _make_env_args_list_from_workarena_curriculum( | ||
level: Literal["l2", "l3"], | ||
task_category_filter: str, | ||
meta_seed: int, | ||
max_steps: int, | ||
curriculum_type: Literal["human", "agent"], | ||
): | ||
""" | ||
Returns a WorkArena predefined task curriculum (e.g., task and seed combination). | ||
""" | ||
assert level in ("l2", "l3") | ||
assert curriculum_type in ("human", "agent") | ||
|
||
env_args_list = [] | ||
|
||
from browsergym.workarena import get_all_tasks_agents | ||
|
||
all_task_tuples = get_all_tasks_agents( | ||
filter=f"{level}.{task_category_filter}" if task_category_filter else level, | ||
meta_seed=meta_seed, | ||
is_agent_curriculum=(curriculum_type == "agent"), | ||
) | ||
|
||
for task, seed in all_task_tuples: | ||
task_name = task.get_task_id() | ||
env_args_list.append(EnvArgs(task_name=task_name, task_seed=seed, max_steps=max_steps)) | ||
|
||
return env_args_list | ||
|
||
|
||
def _make_env_args_list_from_repeat_tasks( | ||
task_list: list[str], max_steps: int, n_repeats: int, seeds_rng: np.random.RandomState | ||
): | ||
""" | ||
Generates a list of `len(task_list)` time `n_repeats` environments arguments, using randomly generated seeds. | ||
""" | ||
env_args_list = [] | ||
for task in task_list: | ||
for seed in seeds_rng.randint(low=0, high=SEED_MAX, size=n_repeats): | ||
env_args_list.append( | ||
EnvArgs( | ||
task_name=task, | ||
task_seed=int(seed), | ||
max_steps=max_steps, | ||
headless=True, | ||
record_video=False, | ||
wait_for_user_message=False, | ||
viewport=None, | ||
slow_mo=None, | ||
storage_state=None, | ||
task_kwargs=None, | ||
) | ||
) | ||
|
||
return env_args_list |
Oops, something went wrong.