Skip to content

Commit

Permalink
Fix show for RelativeBrauerGroupElem (#3373)
Browse files Browse the repository at this point in the history
- fix error because `Indent` was undefined
- remove extra newline at end
- add a missing `Lowercase`
- simplify the code
- make output order less random
  • Loading branch information
fingolfin authored Feb 19, 2024
1 parent 7433548 commit aefcd0a
Showing 1 changed file with 30 additions and 8 deletions.
38 changes: 30 additions & 8 deletions experimental/GModule/GaloisCohomology.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ import Oscar.GrpCoh: CoChain, MultGrpElem, MultGrp, GModule, is_consistent,
Group
import Base: parent
import Oscar: direct_sum
import Oscar: pretty, Lowercase
import Oscar: pretty, Lowercase, Indent, Dedent

export is_coboundary, idel_class_gmodule, relative_brauer_group
export local_invariants, global_fundamental_class, shrink
Expand Down Expand Up @@ -1398,14 +1398,12 @@ end

function Base.show(io::IO, m::MIME"text/plain", a::RelativeBrauerGroupElem)
io = pretty(io)
print(io, "Element of relative Brauer group of $(parent(a).k)\n")
ioC = IOContext(io, :supercompact => true, :compact => true)
print(io, "Element of relative Brauer group of ", Lowercase(), parent(a).k)
io = IOContext(io, :supercompact => true, :compact => true)
print(io, Indent())
for (p,v) = a.data
show(ioC, p)
print(io, " -> ")
show(ioC, v)
print(io, "\n")
data = sort(collect(a.data); by =(x -> first(x) isa AbsSimpleNumFieldEmbedding ? Inf : minimum(first(x))))
for (p,v) in data
print(io, "\n", p, " -> ", v)
end
print(io, Dedent())
end
Expand Down Expand Up @@ -1514,6 +1512,30 @@ an infinite direct sum of the local Brauer groups.
The second return value is a map translating between the local data
and explicit 2-cochains.
```jldoctest
julia> G = SL(2,5)
SL(2,5)
julia> T = character_table(G);
julia> R = gmodule(T[9])
G-module for G acting on vector space of dimension 6 over abelian closure of Q
julia> S = gmodule(CyclotomicField, R)
G-module for G acting on vector space of dimension 6 over cyclotomic field of order 5
julia> B, mB = relative_brauer_group(base_ring(S), character_field(S));
julia> B
Relative Brauer group for cyclotomic field of order 5 over number field of degree 1 over QQ
julia> b = B(S)
Element of relative Brauer group of number field of degree 1 over QQ
<2, 2> -> 1//2 + Z
<5, 5> -> 0 + Z
Complex embedding of number field -> 1//2 + Z
```
"""
function relative_brauer_group(K::AbsSimpleNumField, k::Union{QQField, AbsSimpleNumField} = QQ)
G, mG = automorphism_group(PermGroup, K)
Expand Down

0 comments on commit aefcd0a

Please sign in to comment.