Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Exterior powers of finitely presented modules #2879

Merged
merged 36 commits into from
Oct 18, 2023
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
c5f674f
Implement a prototype for exterior powers of free modules.
HechtiDerLachs Oct 2, 2023
f2ca620
Implement Koszul complexes associated to elements of free modules.
HechtiDerLachs Oct 3, 2023
ed0e6f9
Preserve gradings and implement koszul dual bases.
HechtiDerLachs Oct 3, 2023
abfc597
Implement induced maps on exterior powers.
HechtiDerLachs Oct 3, 2023
7947688
Some tweaks.
HechtiDerLachs Oct 3, 2023
4062c3b
Move everything to appropriate places.
HechtiDerLachs Oct 3, 2023
48b9752
Implement iteration over module monomials of a specific degree.
HechtiDerLachs Oct 4, 2023
4c34531
Add trailing zeroes to the Koszul complex.
HechtiDerLachs Oct 4, 2023
af69344
Allow custom parents and no caching.
HechtiDerLachs Oct 5, 2023
37de4fe
Revert "Implement iteration over module monomials of a specific degree."
HechtiDerLachs Oct 5, 2023
1e0b127
Extend optional caching to Koszul complexes.
HechtiDerLachs Oct 5, 2023
6ace053
Add extra multiplication function.
HechtiDerLachs Oct 5, 2023
9a4b50e
Some tweaks.
HechtiDerLachs Oct 5, 2023
36f6396
Customize printing.
HechtiDerLachs Oct 6, 2023
769478e
Add pure and inv_pure.
HechtiDerLachs Oct 6, 2023
fd61072
Put the check back in.
HechtiDerLachs Oct 6, 2023
aa9828b
Migrate the OrderedMultiIndex.
HechtiDerLachs Oct 6, 2023
5fce897
Export the new functionality.
HechtiDerLachs Oct 6, 2023
c25a897
Clean up the include statements.
HechtiDerLachs Oct 6, 2023
2de9aad
Implement hom method.
HechtiDerLachs Oct 6, 2023
cb807f0
Rename pure and decompose functions.
HechtiDerLachs Oct 6, 2023
df75af0
Migrate tests.
HechtiDerLachs Oct 6, 2023
ddf43ce
Clean up exports from LieAlgebra.jl.
HechtiDerLachs Oct 6, 2023
452ae32
Fix tests.
HechtiDerLachs Oct 6, 2023
bdb32a2
Some improvements in localizations.
HechtiDerLachs Oct 7, 2023
362d188
Implement exterior powers for subquos.
HechtiDerLachs Oct 8, 2023
7c3fb55
Some fixes.
HechtiDerLachs Oct 8, 2023
dc39ef1
Reroute koszul complexes to use the non-Singular methods.
HechtiDerLachs Oct 12, 2023
d395414
Deprecate old singular methods.
HechtiDerLachs Oct 12, 2023
40d381e
Repair Koszul homology.
HechtiDerLachs Oct 12, 2023
e40d9e4
Remove duplicate methods and use singular's depth.
HechtiDerLachs Oct 12, 2023
746a00e
Add tests.
HechtiDerLachs Oct 12, 2023
a364de6
Add some assertions.
HechtiDerLachs Oct 12, 2023
b5134b9
Some tweaks for the ordered multiindices.
HechtiDerLachs Oct 12, 2023
9be4f7e
Pass on the check flag for construction of complexes.
HechtiDerLachs Oct 12, 2023
c2d2e67
Fix doctests and add a truely generic method for the depth computation.
HechtiDerLachs Oct 12, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/Modules/ExteriorPowers/ExteriorPowers.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
include("Helpers.jl")
include("FreeModules.jl")
311 changes: 311 additions & 0 deletions src/Modules/ExteriorPowers/FreeModules.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,311 @@
########################################################################
# Exterior powers of free modules
#
# For F = Rⁿ we provide methods to create ⋀ ᵖF for arbitrary 0 ≤ p ≤ n.
# These modules are cached in F and know that they are an exterior
# power of F. This allows us to implement the wedge product of their
# elements.
########################################################################

# We need to cache eventually created exterior powers.
@attr Dict{Int, Tuple{T, <:Map}} function _exterior_powers(F::T) where {T<:FreeMod}
return Dict{Int, Tuple{typeof(F), Map}}()
end

# User facing constructor for ⋀ ᵖ F.
function exterior_power(F::FreeMod, p::Int; cached::Bool=true)
(p < 0 || p > rank(F)) && error("index out of bounds")

if cached
powers = _exterior_powers(F)
haskey(powers, p) && return powers[p]::Tuple{typeof(F), <:Map}
end

R = base_ring(F)
n = rank(F)
result = FreeMod(R, binomial(n, p))

# In case F was graded, we have to take an extra detour.
if is_graded(F)
G = grading_group(F)
weights = elem_type(G)[]
for ind in OrderedMultiIndexSet(p, n)
push!(weights, sum(degree(F[i]) for i in indices(ind); init=zero(G)))
end
result = grade(result, weights)
end

# Create the multiplication map
function my_mult(u::FreeModElem...)
isempty(u) && return result[1] # only the case p=0
@assert all(x->parent(x)===F, u) "elements must live in the same module"
@assert length(u) == p "need a $p-tuple of elements"
return wedge(collect(u), parent=result)
end
function my_mult(u::Tuple)
return my_mult(u...)
end

function my_decomp(u::FreeModElem)
parent(u) === result || error("element does not belong to the correct module")
k = findfirst(x->x==u, gens(result))
k === nothing && error("element must be a generator of the module")
ind = ordered_multi_index(k, p, n)
e = gens(F)
return Tuple(e[i] for i in indices(ind))
end

mult_map = MapFromFunc(Hecke.TupleParent(Tuple([zero(F) for f in 1:p])), result, my_mult, my_decomp)
@assert domain(mult_map) === parent(Tuple(zero(F) for i in 1:p)) "something went wrong with the parents"

set_attribute!(result, :multiplication_map, mult_map)
set_attribute!(result, :is_exterior_power, (F, p))

cached && (_exterior_powers(F)[p] = (result, mult_map))

return result, mult_map
end

function multiplication_map(M::FreeMod)
has_attribute(M, :multiplication_map) || error("module is not an exterior power")
return get_attribute(M, :multiplication_map)::Map
end

# User facing method to ask whether F = ⋀ ᵖ M for some M.
# This returns a triple `(true, M, p)` in the affirmative case
# and `(false, F, 0)` otherwise.
function is_exterior_power(F::FreeMod)
!has_attribute(F, :is_exterior_power) && return false, F, 0
orig_mod, p = get_attribute(F, :is_exterior_power)::Tuple{typeof(F), Int}
return true, orig_mod, p
end
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I really like this interface. Once this is finally decided on for modules, I will adapt the same function for Lie algebra modules.


# Given two exterior powers F = ⋀ ᵖM and G = ⋀ ʳM and an element
# v ∈ ⋀ ʳ⁻ᵖ M this constructs the module homomorphism associated
# to
#
# v ∧ - : F → G, u ↦ v ∧ u.
#
# We also allow v ∈ M considered as ⋀ ¹M and the same holds in
# the cases p = 1 and r = 1.
function wedge_multiplication_map(F::FreeMod, G::FreeMod, v::FreeModElem)
success, orig_mod, p = is_exterior_power(F)
if !success
Fwedge1, _ = exterior_power(F, 1)
id = hom(F, Fwedge1, gens(Fwedge1))
tmp = wedge_multiplication_map(Fwedge1, G, v)
return compose(id, tmp)
end

success, orig_mod_2, q = is_exterior_power(G)
if !success
Gwedge1, _ = exterior_power(G, 1)
id = hom(Gwedge1, G, gens(G))
tmp = wedge_multiplication_map(F, Gwedge1, v)
return compose(tmp, id)
end

orig_mod === orig_mod_2 || error("modules must be exterior powers of the same module")
H = parent(v)

# In case v comes from the original module, convert.
if H === orig_mod
M, _ = exterior_power(orig_mod, 1)
w = M(coordinates(v))
return wedge_multiplication_map(F, G, w)
end

success, orig_mod_2, r = is_exterior_power(H)
success || error("element is not an exterior product")
orig_mod_2 === orig_mod || error("element is not an exterior product for the correct module")
p + r == q || error("powers are incompatible")

# map the generators
img_gens = [wedge(v, e, parent=G) for e in gens(F)]
return hom(F, G, img_gens)
end

# The wedge product of two or more elements.
function wedge(u::FreeModElem, v::FreeModElem;
parent::FreeMod=begin
success, F, p = is_exterior_power(Oscar.parent(u))
if !success
F = Oscar.parent(u)
p = 1
end
success, _, q = is_exterior_power(Oscar.parent(v))
!success && (q = 1)
exterior_power(F, p + q)[1]
end
)
success1, F1, p = is_exterior_power(Oscar.parent(u))
if !success1
F = Oscar.parent(u)
Fwedge1, _ = exterior_power(F1, 1)
return wedge(Fwedge1(coordinates(u)), v, parent=parent)
end

success2, F2, q = is_exterior_power(Oscar.parent(v))
if !success2
F = Oscar.parent(v)
Fwedge1, _ = exterior_power(F1, 1)
return wedge(u, Fwedge1(coordinates(v)), parent=parent)
end

F1 === F2 || error("modules are not exterior powers of the same original module")
n = rank(F1)

result = zero(parent)
for (i, ind_i) in enumerate(OrderedMultiIndexSet(p, n))
a = u[i]
iszero(a) && continue
for (j, ind_j) in enumerate(OrderedMultiIndexSet(q, n))
b = v[j]
iszero(b) && continue
sign, k = _wedge(ind_i, ind_j)
iszero(sign) && continue
result = result + sign * a * b * parent[linear_index(k)]
end
end
return result
end

function wedge(u::Vector{T};
parent::FreeMod=begin
r = 0
isempty(u) && error("list must not be empty")
F = Oscar.parent(first(u)) # initialize variable
for v in u
success, F, p = is_exterior_power(Oscar.parent(v))
if !success
F = Oscar.parent(v)
p = 1
end
r = r + p
end
exterior_power(F, r)[1]
end
) where {T<:FreeModElem}
isempty(u) && error("list must not be empty")
isone(length(u)) && return first(u)
k = div(length(u), 2)
result = wedge(wedge(u[1:k]), wedge(u[k+1:end]), parent=parent)
@assert Oscar.parent(result) === parent
return result
end


########################################################################
# Koszul homology
########################################################################

function koszul_complex(v::FreeModElem; cached::Bool=true)
F = parent(v)
R = base_ring(F)
n = rank(F)
ext_powers = [exterior_power(F, p, cached=cached)[1] for p in 0:n]
boundary_maps = [wedge_multiplication_map(ext_powers[i+1], ext_powers[i+2], v) for i in 0:n-1]
Z = is_graded(F) ? graded_free_module(R, []) : free_module(R, 0)
pushfirst!(boundary_maps, hom(Z, domain(first(boundary_maps)), elem_type(domain(first(boundary_maps)))[]))
push!(boundary_maps, hom(codomain(last(boundary_maps)), Z, [zero(Z) for i in 1:ngens(codomain(last(boundary_maps)))]))
return chain_complex(boundary_maps, seed=-1)
end

function koszul_complex(v::FreeModElem, M::ModuleFP; cached::Bool=true)
K = koszul_complex(v, cached=cached)
KM = tensor_product(K, M)
return KM
end

function koszul_homology(v::FreeModElem, i::Int; cached::Bool=true)
F = parent(v)
n = rank(F)

# Catch the edge cases
if i == n # This captures the homological degree zero due to the convention of the chain_complex constructor
phi = wedge_multiplication_map(exterior_power(F, 0, cached=cached)[1], F, v)
return kernel(phi)[1]
end

if iszero(i) # Homology at the last entry of the complex.
phi = wedge_multiplication_map(exterior_power(F, n-1)[1], exterior_power(F, n, cached=cached)[1], v)
return cokernel(phi)[1]
end

ext_powers = [exterior_power(F, p, cached=cached)[1] for p in i-1:i+1]
boundary_maps = [wedge_multiplication_map(ext_powers[p], ext_powers[p+1], v) for p in 1:2]
K = chain_complex(boundary_maps)
return homology(K, 1)
end

function koszul_homology(v::FreeModElem, M::ModuleFP, i::Int; cached::Bool=true)
F = parent(v)
n = rank(F)

# Catch the edge cases
if i == n # This captures the homological degree zero due to the convention of the chain_complex constructor
phi = wedge_multiplication_map(exterior_power(F, 0, cached=cached)[1], F, v)
K = chain_complex([phi])
KM = tensor_product(K, M)
return kernel(map(KM, 1))[1]
end

if iszero(i) # Homology at the last entry of the complex.
phi = wedge_multiplication_map(exterior_power(F, n-1)[1], exterior_power(F, n, cached=cached)[1], v)
K = chain_complex([phi])
KM = tensor_product(K, M)
return cokernel(map(K, 1)) # TODO: cokernel does not seem to return a map by default. Why?
end

ext_powers = [exterior_power(F, p, cached=cached)[1] for p in i-1:i+1]
boundary_maps = [wedge_multiplication_map(ext_powers[p], ext_powers[p+1], v) for p in 1:2]
K = chain_complex(boundary_maps)
return homology(K, 1)
end

function koszul_dual(F::FreeMod; cached::Bool=true)
success, M, p = is_exterior_power(F)
!success && error("module must be an exterior power of some other module")
return exterior_power(M, rank(M) - p, cached=cached)[1]
end

function koszul_duals(v::Vector{T}; cached::Bool=true) where {T<:FreeModElem}
isempty(v) && error("list of elements must not be empty")
all(u->parent(u) === parent(first(v)), v[2:end]) || error("parent mismatch")

F = parent(first(v))
success, M, p = is_exterior_power(F)
n = rank(M)
success || error("element must be an exterior product")
k = [findfirst(x->x==u, gens(F)) for u in v]
any(x->x===nothing, k) && error("elements must be generators of the module")
ind = [ordered_multi_index(r, p, n) for r in k]
comp = [ordered_multi_index([i for i in 1:n if !(i in indices(I))], n) for I in ind]
lin_ind = linear_index.(comp)
F_dual = koszul_dual(F, cached=cached)
results = [F_dual[j] for j in lin_ind]
for r in 1:length(v)
sign, _ = _wedge(ind[r], comp[r])
isone(sign) || (results[r] = -results[r])
end
return results
end

function koszul_dual(v::FreeModElem; cached::Bool=true)
return first(koszul_duals([v], cached=cached))
end

function induced_map_on_exterior_power(phi::FreeModuleHom{<:FreeMod, <:FreeMod, Nothing}, p::Int;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A similar function already exists for LieAlgebraModule.jl under the name hom_exterior_power. It would be great to have a unified interface for both types of modules.
This is not a request for you to change your proposal, I just wanted to mention it.
@fieker suggested to name this method simply hom and supply both exterior powers as arguments, as well as the home on the base modules

domain::FreeMod=exterior_power(Oscar.domain(phi), p)[1],
codomain::FreeMod=exterior_power(Oscar.codomain(phi), p)[1]
)
F = Oscar.domain(phi)
m = rank(F)
G = Oscar.codomain(phi)
n = rank(G)

imgs = phi.(gens(F))
img_gens = [wedge(imgs[indices(ind)], parent=codomain) for ind in OrderedMultiIndexSet(p, m)]
return hom(domain, codomain, img_gens)
end

Loading