-
Notifications
You must be signed in to change notification settings - Fork 132
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Exterior powers of finitely presented modules #2879
Changes from all commits
c5f674f
f2ca620
ed0e6f9
abfc597
7947688
4062c3b
48b9752
4c34531
af69344
37de4fe
1e0b127
6ace053
9a4b50e
36f6396
769478e
fd61072
aa9828b
5fce897
c25a897
2de9aad
cb807f0
df75af0
ddf43ce
452ae32
bdb32a2
362d188
7c3fb55
dc39ef1
d395414
40d381e
e40d9e4
746a00e
a364de6
b5134b9
9be4f7e
c2d2e67
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
######################################################################## | ||
# Ordered multiindices of the form 0 < i₁ < i₂ < … < iₚ ≤ n. | ||
# | ||
# For instance, these provide a coherent way to enumerate the generators | ||
# of an exterior power ⋀ ᵖ M of a module M given a chosen set of | ||
# generators of M. But they can also be used for other purposes | ||
# like enumerating subsets of p elements out of a set with n elements. | ||
######################################################################## | ||
mutable struct OrderedMultiIndex{IntType<:IntegerUnion} | ||
i::Vector{IntType} | ||
n::IntType | ||
|
||
function OrderedMultiIndex(i::Vector{T}, n::T) where {T<:IntegerUnion} | ||
@assert all(k->i[k]<i[k+1], 1:length(i)-1) "indices must be strictly ordered" | ||
return new{T}(i, n) | ||
end | ||
end | ||
|
||
function ordered_multi_index(i::Vector{T}, n::T) where {T<:IntegerUnion} | ||
return OrderedMultiIndex(i, n) | ||
end | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns the vector (i₁,…,iₚ). | ||
indices(a::OrderedMultiIndex) = a.i | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns n. | ||
bound(a::OrderedMultiIndex) = a.n | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns p. | ||
length(a::OrderedMultiIndex) = length(a.i) | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this returns iₖ. | ||
getindex(a::OrderedMultiIndex, k::Int) = a.i[k] | ||
|
||
index_type(a::OrderedMultiIndex) = index_type(typeof(a)) | ||
index_type(::Type{OrderedMultiIndex{T}}) where {T} = T | ||
|
||
# Internal function for "multiplication" of ordered multiindices. | ||
# | ||
# For i = (0 < i₁ < i₂ < … < iₚ ≤ n) and j = (0 < j₁ < j₂ < … < jᵣ ≤ n) | ||
# the result is a pair `(sign, a)` with `sign` either 0 in case that | ||
# iₖ = jₗ for some k and l, or ±1 depending on the number of transpositions | ||
# needed to put (i₁, …, iₚ, j₁, …, jᵣ) into a strictly increasing order | ||
# to produce `a`. | ||
function _mult(a::OrderedMultiIndex{T}, b::OrderedMultiIndex{T}) where {T} | ||
@assert bound(a) == bound(b) "multiindices must have the same bounds" | ||
|
||
# in case of a double index return zero | ||
any(x->(x in indices(b)), indices(a)) && return 0, indices(a) | ||
|
||
p = length(a) | ||
q = length(b) | ||
result_indices = vcat(indices(a), indices(b)) | ||
sign = 1 | ||
|
||
# bubble sort result_indices and keep track of the sign | ||
for k in p:-1:1 | ||
l = k | ||
c = result_indices[l] | ||
while l < p + q && c > result_indices[l+1] | ||
result_indices[l] = result_indices[l+1] | ||
sign = -sign | ||
l = l+1 | ||
end | ||
result_indices[l] = c | ||
end | ||
return sign, result_indices | ||
end | ||
|
||
# For two ordered multiindices i = (0 < i₁ < i₂ < … < iₚ ≤ n) | ||
# and j = (0 < j₁ < j₂ < … < jᵣ ≤ n) this returns a pair `(sign, a)` | ||
# with `sign` either 0 in case that iₖ = jₗ for some k and l, | ||
# or ±1 depending on the number of transpositions needed to put | ||
# (i₁, …, iₚ, j₁, …, jᵣ) into a strictly increasing order to produce `a`. | ||
function _wedge(a::OrderedMultiIndex{T}, b::OrderedMultiIndex{T}) where {T} | ||
sign, ind = _mult(a, b) | ||
iszero(sign) && return sign, a | ||
return sign, OrderedMultiIndex(ind, bound(a)) | ||
end | ||
|
||
function _wedge(a::Vector{T}) where {T <: OrderedMultiIndex} | ||
isempty(a) && error("list must not be empty") | ||
isone(length(a)) && return 1, first(a) | ||
k = div(length(a), 2) | ||
b = a[1:k] | ||
c = a[k+1:end] | ||
sign_b, ind_b = _wedge(b) | ||
sign_c, ind_c = _wedge(c) | ||
sign, ind = _wedge(ind_b, ind_c) | ||
return sign * sign_b * sign_c, ind | ||
end | ||
|
||
function ==(a::OrderedMultiIndex{T}, b::OrderedMultiIndex{T}) where {T} | ||
return bound(a) == bound(b) && indices(a) == indices(b) | ||
end | ||
|
||
######################################################################## | ||
# A data type to facilitate iteration over all ordered multiindices | ||
# of the form 0 < i₁ < i₂ < … < iₚ ≤ n for fixed 0 ≤ p ≤ n. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. So... this is essentially the parent of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I was not so sure about this, to be honest. It's not actually a parent in the Oscar sense, but in spirit: yes. And it's true: It doesn't know about the At some point I thought of removing the |
||
# | ||
# Example: | ||
# | ||
# for i in OrderedMultiIndexSet(3, 5) | ||
# # do something with i = (0 < i₁ < i₂ < i₃ ≤ 5). | ||
# end | ||
######################################################################## | ||
mutable struct OrderedMultiIndexSet | ||
n::Int | ||
p::Int | ||
|
||
function OrderedMultiIndexSet(p::Int, n::Int) | ||
@assert 0 <= p <= n "invalid bounds" | ||
return new(n, p) | ||
end | ||
end | ||
|
||
bound(I::OrderedMultiIndexSet) = I.n | ||
index_length(I::OrderedMultiIndexSet) = I.p | ||
|
||
Base.eltype(I::OrderedMultiIndexSet) = OrderedMultiIndex | ||
Base.length(I::OrderedMultiIndexSet) = binomial(bound(I), index_length(I)) | ||
|
||
function Base.iterate(I::OrderedMultiIndexSet) | ||
ind = OrderedMultiIndex([i for i in 1:index_length(I)], bound(I)) | ||
return ind, ind | ||
end | ||
|
||
function Base.iterate(I::OrderedMultiIndexSet, state::OrderedMultiIndex) | ||
bound(I) == bound(state) || error("index not compatible with set") | ||
ind = copy(indices(state)) | ||
l = length(state) | ||
while l > 0 && ind[l] == bound(I) - length(state) + l | ||
l = l - 1 | ||
end | ||
iszero(l) && return nothing | ||
ind[l] = ind[l] + 1 | ||
l = l + 1 | ||
while l <= length(state) | ||
ind[l] = ind[l-1] + 1 | ||
l = l + 1 | ||
end | ||
result = OrderedMultiIndex(ind, bound(I)) | ||
return result, result | ||
end | ||
|
||
function Base.show(io::IO, ind::OrderedMultiIndex) | ||
i = indices(ind) | ||
print(io, "0 ") | ||
for i in indices(ind) | ||
print(io, "< $i ") | ||
end | ||
print(io, "<= $(bound(ind))") | ||
end | ||
|
||
# For an ordered multiindex i = (0 < i₁ < i₂ < … < iₚ ≤ n) this | ||
# returns the number k so that i appears at the k-th spot in the | ||
# enumeration of all ordered multiindices for this pair 0 ≤ p ≤ n. | ||
function linear_index(ind::OrderedMultiIndex) | ||
n = bound(ind) | ||
p = length(ind) | ||
iszero(p) && return 1 | ||
isone(p) && return ind[1] | ||
i = indices(ind) | ||
return binomial(n, p) - binomial(n - first(i) + 1, p) + linear_index(OrderedMultiIndex(i[2:end].-first(i), n-first(i))) | ||
end | ||
|
||
# For a pair 0 ≤ p ≤ n return the k-th ordered multiindex in the | ||
# enumeration of all ordered multiindices (0 < i₁ < i₂ < … < iₚ ≤ n). | ||
function ordered_multi_index(k::Int, p::Int, n::Int) | ||
(k < 1 || k > binomial(n, p)) && error("index out of range") | ||
iszero(p) && return OrderedMultiIndex(Int[], n) | ||
isone(p) && return OrderedMultiIndex([k], n) | ||
n == p && return OrderedMultiIndex([k for k in 1:n], n) | ||
bin = binomial(n, p) | ||
i1 = findfirst(j->(bin - binomial(n - j, p) > k - 1), 1:n-p) | ||
if i1 === nothing | ||
prev_res = ordered_multi_index(k - bin + 1, p-1, p-1) | ||
k = n-p+1 | ||
return OrderedMultiIndex(pushfirst!(indices(prev_res).+k, k), n) | ||
else | ||
prev_res = ordered_multi_index(k - bin + binomial(n - i1 + 1, p), p-1, n - i1) | ||
return OrderedMultiIndex(pushfirst!(indices(prev_res).+i1, i1), n) | ||
end | ||
end | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
#include("Helpers.jl") Moved to src/Combinatorics/OrderedMultiIndex.jl | ||
include("FreeModules.jl") | ||
include("SubQuo.jl") | ||
include("Generic.jl") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why is this struct mutable?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good question. It probably shouldn't be, unless we want to allow in-place iteration. Do we? Is there a potential speedup from making it immutable?