Computationally focused database using pluggable stores
- Yahoo's HaloDB (https://github.com/yahoo/HaloDB)
- MapDB (https://mapdb.org)
- Facebook's RocksDB (https://rocksdb.org)
- Redis (https://redis.io)
- Apache Lucene (https://lucene.apache.org)
- SQLite (https://www.sqlite.org)
- H2 (https://h2database.com)
- DuckDB (https://duckdb.org)
- PostgreSQL (https://www.postgresql.org)
- Redis (https://redis.io)
To add all modules:
libraryDependencies += "com.outr" %% "lightdb-all" % "2.1.2"
For a specific implementation like Lucene:
libraryDependencies += "com.outr" %% "lightdb-lucene" % "2.1.2"
Watch this Java User Group demonstration of LightDB
This guide will walk you through setting up and using LightDB, a high-performance computational database. We'll use a sample application to explore its key features.
NOTE: This project uses Rapid (https://github.com/outr/rapid) for effects. It's somewhat similar to cats-effect, but
with a focus on virtual threads and simplicity. In a normal project, you likely wouldn't be using .sync()
to invoke
each task, but for the purposes of this documentation, this is used to make the code execute blocking.
Ensure you have the following:
- Scala installed
- SBT (Scala Build Tool) installed
Add the following dependency to your build.sbt
file:
libraryDependencies += "com.outr" %% "lightdb-all" % "2.1.2"
LightDB uses Document and DocumentModel for schema definitions. Here's an example of defining a Person
and City
:
import lightdb._
import lightdb.collection._
import lightdb.doc._
import fabric.rw._
case class Person(
name: String,
age: Int,
city: Option[City] = None,
nicknames: Set[String] = Set.empty,
friends: List[Id[Person]] = Nil,
_id: Id[Person] = Person.id()
) extends Document[Person]
object Person extends DocumentModel[Person] with JsonConversion[Person] {
override implicit val rw: RW[Person] = RW.gen
val name: I[String] = field.index("name", _.name)
val age: I[Int] = field.index("age", _.age)
val city: I[Option[City]] = field.index("city", _.city)
val nicknames: I[Set[String]] = field.index("nicknames", _.nicknames)
val friends: I[List[Id[Person]]] = field.index("friends", _.friends)
}
case class City(name: String)
object City {
implicit val rw: RW[City] = RW.gen
}
Define the database with collections for each model:
import lightdb.sql._
import lightdb.store._
import lightdb.upgrade._
import java.nio.file.Path
class DB extends LightDB {
lazy val directory: Option[Path] = Some(Path.of(s"docs/db/example"))
lazy val people: Collection[Person, Person.type] = collection(Person)
override def storeManager: StoreManager = SQLiteStore
override def upgrades: List[DatabaseUpgrade] = Nil
}
Instantiate and initialize the database:
val db = new DB
// db: DB = repl.MdocSession$MdocApp$DB@34837905
db.init.sync()
Add records to the database:
val adam = Person(name = "Adam", age = 21)
// adam: Person = Person(
// name = "Adam",
// age = 21,
// city = None,
// nicknames = Set(),
// friends = List(),
// _id = Id(value = "lge8a6IpKSA12E5SWQvdXikxdBR7xyRe")
// )
db.people.transaction { implicit transaction =>
db.people.insert(adam)
}.sync()
// res1: Person = Person(
// name = "Adam",
// age = 21,
// city = None,
// nicknames = Set(),
// friends = List(),
// _id = Id(value = "lge8a6IpKSA12E5SWQvdXikxdBR7xyRe")
// )
Retrieve records using filters:
db.people.transaction { implicit transaction =>
db.people.query.filter(_.age BETWEEN 20 -> 29).toList.map { peopleIn20s =>
println(s"People in their 20s: $peopleIn20s")
}
}.sync()
// People in their 20s: List(Person(Adam,21,None,Set(),List(),Id(jh1j1u8RFGhdDsgLA9FTvFhT6gmK4sA2)), Person(Adam,21,None,Set(),List(),Id(HN5sRuc4kzsD117zfXWgik8cYiXgBnV5)), Person(Adam,21,None,Set(),List(),Id(b97xde4gBEVjx5kmhERIuW0mViUUzwgD)), Person(Adam,21,None,Set(),List(),Id(sviPlbAHMRPe70xFYdqLWOWcold9vD18)), Person(Adam,21,None,Set(),List(),Id(a87FV2xnllmkd54vbJkApxROdmY2R9GW)), Person(Adam,21,None,Set(),List(),Id(lge8a6IpKSA12E5SWQvdXikxdBR7xyRe)))
-
Transactions: LightDB ensures atomic operations within transactions.
-
Indexes: Support for various indexes, like tokenized and field-based, ensures fast lookups.
-
Aggregation: Perform aggregations such as
min
,max
,avg
, andsum
. -
Streaming: Stream records for large-scale queries.
-
Backups and Restores: Backup and restore databases seamlessly.
db.people.transaction { implicit transaction =>
db.people.query
.aggregate(p => List(p.age.min, p.age.max, p.age.avg, p.age.sum))
.toList
.map { results =>
println(s"Results: $results")
}
}.sync()
// Results: List(MaterializedAggregate({"ageMin": 21, "ageMax": 21, "ageAvg": 21.0, "ageSum": 126},repl.MdocSession$MdocApp$Person$@2e8a01b0))
db.people.transaction { implicit transaction =>
db.people.query.grouped(_.age).toList.map { grouped =>
println(s"Grouped: $grouped")
}
}.sync()
// Grouped: List(Grouped(21,List(Person(Adam,21,None,Set(),List(),Id(jh1j1u8RFGhdDsgLA9FTvFhT6gmK4sA2)), Person(Adam,21,None,Set(),List(),Id(HN5sRuc4kzsD117zfXWgik8cYiXgBnV5)), Person(Adam,21,None,Set(),List(),Id(b97xde4gBEVjx5kmhERIuW0mViUUzwgD)), Person(Adam,21,None,Set(),List(),Id(sviPlbAHMRPe70xFYdqLWOWcold9vD18)), Person(Adam,21,None,Set(),List(),Id(a87FV2xnllmkd54vbJkApxROdmY2R9GW)), Person(Adam,21,None,Set(),List(),Id(lge8a6IpKSA12E5SWQvdXikxdBR7xyRe)))))
Backup your database:
import lightdb.backup._
import java.io.File
DatabaseBackup.archive(db, new File("backup.zip")).sync()
// res5: Int = 7
Restore from a backup:
DatabaseRestore.archive(db, new File("backup.zip")).sync()
// res6: Int = 7
Dispose of the database when done:
db.dispose.sync()
This guide provided an overview of using LightDB. Experiment with its features to explore the full potential of this high-performance database. For advanced use cases, consult the API documentation.