Skip to content

outr/lightdb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lightdb

CI

Computationally focused database using pluggable stores

Provided Stores

SBT Configuration

To add all modules:

libraryDependencies += "com.outr" %% "lightdb-all" % "2.0.1"

For a specific implementation like Lucene:

libraryDependencies += "com.outr" %% "lightdb-lucene" % "2.0.1"

Videos

Watch this Java User Group demonstration of LightDB

Getting Started

This guide will walk you through setting up and using LightDB, a high-performance computational database. We'll use a sample application to explore its key features.

NOTE: This project uses Rapid (https://github.com/outr/rapid) for effects. It's somewhat similar to cats-effect, but with a focus on virtual threads and simplicity. In a normal project, you likely wouldn't be using .sync() to invoke each task, but for the purposes of this documentation, this is used to make the code execute blocking.


Prerequisites

Ensure you have the following:

  • Scala installed
  • SBT (Scala Build Tool) installed

Setup

Add LightDB to Your Project

Add the following dependency to your build.sbt file:

libraryDependencies += "com.outr" %% "lightdb-all" % "2.0.1"

Example: Defining Models and Collections

Step 1: Define Your Models

LightDB uses Document and DocumentModel for schema definitions. Here's an example of defining a Person and City:

import lightdb._
import lightdb.collection._
import lightdb.doc._
import fabric.rw._

case class Person(
  name: String,
  age: Int,
  city: Option[City] = None,
  nicknames: Set[String] = Set.empty,
  friends: List[Id[Person]] = Nil,
  _id: Id[Person] = Person.id()
) extends Document[Person]

object Person extends DocumentModel[Person] with JsonConversion[Person] {
  override implicit val rw: RW[Person] = RW.gen

  val name: I[String] = field.index("name", _.name)
  val age: I[Int] = field.index("age", _.age)
  val city: I[Option[City]] = field.index("city", _.city)
  val nicknames: I[Set[String]] = field.index("nicknames", _.nicknames)
  val friends: I[List[Id[Person]]] = field.index("friends", _.friends)
}
case class City(name: String)

object City {
  implicit val rw: RW[City] = RW.gen
}

Step 2: Create the Database Class

Define the database with collections for each model:

import lightdb.sql._
import lightdb.store._
import lightdb.upgrade._
import java.nio.file.Path

class DB extends LightDB {
  lazy val directory: Option[Path] = Some(Path.of(s"docs/db/example"))
   
  lazy val people: Collection[Person, Person.type] = collection(Person)

  override def storeManager: StoreManager = SQLiteStore

  override def upgrades: List[DatabaseUpgrade] = Nil
}

Using the Database

Step 1: Initialize the Database

Instantiate and initialize the database:

val db = new DB
// db: DB = repl.MdocSession$MdocApp$DB@468da967
db.init.sync()

Step 2: Insert Data

Add records to the database:

val adam = Person(name = "Adam", age = 21)
// adam: Person = Person(
//   name = "Adam",
//   age = 21,
//   city = None,
//   nicknames = Set(),
//   friends = List(),
//   _id = Id(value = "b97xde4gBEVjx5kmhERIuW0mViUUzwgD")
// )
db.people.transaction { implicit transaction =>
  db.people.insert(adam)
}.sync()
// res1: Person = Person(
//   name = "Adam",
//   age = 21,
//   city = None,
//   nicknames = Set(),
//   friends = List(),
//   _id = Id(value = "b97xde4gBEVjx5kmhERIuW0mViUUzwgD")
// )

Step 3: Query Data

Retrieve records using filters:

db.people.transaction { implicit transaction =>
  db.people.query.filter(_.age BETWEEN 20 -> 29).toList.map { peopleIn20s =>
    println(s"People in their 20s: $peopleIn20s")
  }
}.sync()
// People in their 20s: List(Person(Adam,21,None,Set(),List(),Id(jh1j1u8RFGhdDsgLA9FTvFhT6gmK4sA2)), Person(Adam,21,None,Set(),List(),Id(HN5sRuc4kzsD117zfXWgik8cYiXgBnV5)), Person(Adam,21,None,Set(),List(),Id(b97xde4gBEVjx5kmhERIuW0mViUUzwgD)))

Features Highlight

  1. Transactions: LightDB ensures atomic operations within transactions.

  2. Indexes: Support for various indexes, like tokenized and field-based, ensures fast lookups.

  3. Aggregation: Perform aggregations such as min, max, avg, and sum.

  4. Streaming: Stream records for large-scale queries.

  5. Backups and Restores: Backup and restore databases seamlessly.


Advanced Queries

Aggregations

db.people.transaction { implicit transaction =>
  db.people.query
    .aggregate(p => List(p.age.min, p.age.max, p.age.avg, p.age.sum))
    .toList
    .map { results =>
      println(s"Results: $results")
    }
}.sync()
// Results: List(MaterializedAggregate({"ageMin": 21, "ageMax": 21, "ageAvg": 21.0, "ageSum": 63},repl.MdocSession$MdocApp$Person$@506316f))

Grouping

db.people.transaction { implicit transaction =>
  db.people.query.grouped(_.age).toList.map { grouped =>
    println(s"Grouped: $grouped")
  }
}.sync()
// Grouped: List(Grouped(21,List(Person(Adam,21,None,Set(),List(),Id(jh1j1u8RFGhdDsgLA9FTvFhT6gmK4sA2)), Person(Adam,21,None,Set(),List(),Id(HN5sRuc4kzsD117zfXWgik8cYiXgBnV5)), Person(Adam,21,None,Set(),List(),Id(b97xde4gBEVjx5kmhERIuW0mViUUzwgD)))))

Backup and Restore

Backup your database:

import lightdb.backup._
import java.io.File

DatabaseBackup.archive(db, new File("backup.zip")).sync()
// res5: Int = 4

Restore from a backup:

DatabaseRestore.archive(db, new File("backup.zip")).sync()
// res6: Int = 4

Clean Up

Dispose of the database when done:

db.dispose.sync()

Conclusion

This guide provided an overview of using LightDB. Experiment with its features to explore the full potential of this high-performance database. For advanced use cases, consult the API documentation.