Implementation of our solution to the MAG240M track in KDD CUP 2021. For more information, please refer to the OGB-LSC paper and the web page OGB-LSC @ KDD Cup 2021 | Open Graph Benchmark (stanford.edu)
Team Members: Kaiyuan Li, Xiang Long, Zhichao Feng, Mingdao Wang, Xiaofan Liu, Pengfei Wang, Quan Lin, Kun Zhao, Baole Ai.
- ogb==1.3.1
- torch_sparse==0.6.9
- torch==1.8.1
- tqdm==4.60.0
- pytorch_lightning==1.2.0
- numpy==1.20.2
- torch_geometric==1.7.0
- scikit_learn==0.24.2
The default path of the dataset is .
, you can change it with add --root <your_path>
in your command line for all python scripts. We also provide script run.sh
which can change the dataset path easily.
python ./pre-process/sgc_embedding.py
python ./pre-process/mlp_attention.py
Note: The version must be consistent with the version saved by pytorch-lighting. If your logs
file is not empty, please replace it with the corresponding version.
RGAT with RoBerta embedding
python ./model/rgnn.py --commit "rgat"
python ./model/rgnn.py --version 0 --commit "rgat" --evaluate --save_embed
RGAT with SGC embedding
python ./model/rgnn.py --commit "sgc_rgat"
python ./model/rgnn.py --version 1 --commit "sgc_rgat" --evaluate --save_embed
Transfer Learning
python ./post-process/post_kfload.py --commit 'rgat'
python ./post-process/post_kfload.py --commit 'sgc_rgat'
Model Ensemble
python ./post-process/ensemble.py
All the results are obtained in the following environment:
- CPU: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz * 2
- GPU: GeForce RTX 3090 (24GB)
- RAM: 256G, 3200MHz
- HDD: NVMe SSD, 410K IOPS
Transfer Learning
Model | None-tune | Rough-tune | Fine-tune |
---|---|---|---|
RoBERTa+R-GAT | 0.7064 | 0.7294 | 0.7355 |
SGC+R-GAT | 0.7081 | 0.7293 | 0.7359 |
The results above are obtained on the validation data. Also, since we use validation data in the transfer learning phase, the results of Rough-tune and Fine-tune are according 5-fold cross validation on validation data.
Model Ensemble
Method | Validation | Test |
---|---|---|
Voting-Hard | 0.7413 | - |
Stacking | 0.7427 | - |
Voting-Soft | 0.7440 | 0.7381 |