The Optim package represents an ongoing project to implement basic optimization algorithms in pure Julia under an MIT license. Because it is being developed from scratch, it is not as robust as the C-based NLOpt package. For work whose accuracy must be unquestionable, we recommend using the NLOpt package. See the NLOpt.jl GitHub repository for details.
Although Optim is a work in progress, it is quite usable as is. In what follows, we describe the Optim package's API.
To show how the Optim package can be used, we'll implement the Rosenbrock function, a classic problem in numerical optimization. We'll assume that you've already installed the Optim package using Julia's package manager.
First, we'll load Optim and define the Rosenbrock function:
using Optim
function rosenbrock(x::Vector)
return (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
end
function rosenbrock_gradient!(x::Vector, storage::Vector)
storage[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1]
storage[2] = 200.0 * (x[2] - x[1]^2)
end
function rosenbrock_hessian!(x::Vector, storage::Matrix)
storage[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]^2
storage[1, 2] = -400.0 * x[1]
storage[2, 1] = -400.0 * x[1]
storage[2, 2] = 200.0
end
Note that the functions we're using to calculate the gradient and Hessian of the Rosenbrock function mutate a fixed-sized storage array, which is passed as an additional argument called storage
. By mutating a single array over many iterations, this style of function definition removes the sometimes considerable costs associated with allocating a new array during each call to the rosenbrock_gradient!
or rosenbrock_hessian!
functions. You can use Optim
without manually defining a gradient or Hessian function, but if you do define these functions, they must take these two arguments in this order.
Once we've defined these core functions, we can find the minimum of the Rosenbrock function using any of our favorite optimization algorithms. To make the code easier to read, we'll use shorter names for the core functions:
f = rosenbrock
g! = rosenbrock_gradient!
h! = rosenbrock_hessian!
With that done, the easiest way to perform optimization is to specify the core function f
and an initial point, x
:
optimize(f, [0.0, 0.0])
Optim will default to using the Nelder-Mead method in this case. We can specify the Nelder-Mead method explicitly using the method
keyword:
optimize(f, [0.0, 0.0], method = :nelder_mead)
The method
keyword also allows us to specify other methods as well. Below, we use L-BFGS, a quasi-Newton method that requires a gradient. If we pass f
alone, Optim will construct an approximate gradient for us using central finite differencing:
optimize(f, [0.0, 0.0], method = :l_bfgs)
For greater precision, you should pass in the exact gradient function, g!
:
optimize(f, g!, [0.0, 0.0], method = :l_bfgs)
For some methods, like simulated annealing, the exact gradient will be ignored:
optimize(f, g!, [0.0, 0.0], method = :simulated_annealing)
In addition to providing exact gradients, you can provide an exact Hessian function h!
as well:
optimize(f, g!, h!, [0.0, 0.0], method = :newton)
Like gradients, the Hessian function will be ignored if you use a method that does not require it:
optimize(f, g!, h!, [0.0, 0.0], method = :l_bfgs)
Note that Optim will not generate approximate Hessians using finite differencing because of the potentially low accuracy of approximations to the Hessians. Other than Newton's method, none of the algorithms provided by the Optim package employ exact Hessians.
The section above described the basic API for the Optim package. We employed several different optimization algorithms using the method
keyword, which can take on any of the following values:
:bfgs
:cg
:gradient_descent
:momentum_gradient_descent
:l_bfgs
:nelder_mead
:newton
:simulated_annealing
In addition to the method
keyword, you can alter the behavior of the Optim package by using four other keywords:
xtol
: What is the threshold for determining convergence? Defaults to1e-32
.ftol
: What is the threshold for determining convergence? Defaults to1e-32
.grtol
: What is the threshold for determining convergence? Defaults to1e-8
.iterations
: How many iterations will run before the algorithm gives up? Defaults to1_000
.store_trace
: Should a trace of the optimization algorithm's state be stored? Defaults tofalse
.show_trace
: Should a trace of the optimization algorithm's state be shown onSTDOUT
? Defaults tofalse
.
Thus, one might construct a complex call to optimize
like:
res = optimize(f, g!,
[0.0, 0.0],
method = :gradient_descent,
grtol = 1e-12,
iterations = 10,
store_trace = true,
show_trace = false)
If you want to get better performance out of Optim, you'll need to dig into the internals. In particular, you'll need to understand the DifferentiableFunction
and TwiceDifferentiableFunction
types that the Optim package uses to couple a function f
with its gradient g!
and its Hessian h!
. We could create objects of these types as follows:
d1 = DifferentiableFunction(rosenbrock)
d2 = DifferentiableFunction(rosenbrock,
rosenbrock_gradient!)
d3 = TwiceDifferentiableFunction(rosenbrock,
rosenbrock_gradient!,
rosenbrock_hessian!)
Note that d1
above will use central finite differencing to approximate the gradient of rosenbrock
.
In addition to these core ways of creating a DifferentiableFunction
object, one can also create a DifferentiableFunction
using three functions -- the third of which will evaluate the function and gradient simultaneously. To see this, let's implement such a joint evaluation function and insert it into a DifferentiableFunction
:
function rosenbrock_and_gradient!(x::Vector, storage)
d1 = (1.0 - x[1])
d2 = (x[2] - x[1]^2)
storage[1] = -2.0 * d1 - 400.0 * d2 * x[1]
storage[2] = 200.0 * d2
return d1^2 + 100.0 * d2^2
end
d4 = DifferentiableFunction(rosenbrock,
rosenbrock_gradient!,
rosenbrock_and_gradient!)
You can then use any of the functions contained in d4
depending on performance/algorithm needs:
x = [0.0, 0.0]
y = d4.f(x)
storage = Array(Float64, length(x))
d4.g!(x, storage)
y = d4.fg!(x, storage)
If you do not provide a function like rosenbrock_and_gradient!
, the constructor for DifferentiableFunction
will define one for you automatically. By providing rosenbrock_and_gradient!
function, you can sometimes get substantially better performance.
By defining a DifferentiableFunction
that estimates function values and gradients simultaneously, you can sometimes achieve noticeable performance gains:
@elapsed optimize(f, g!, [0.0, 0.0], method = :bfgs)
@elapsed optimize(d4, [0.0, 0.0], method = :bfgs)
At the moment, the performance bottleneck for many problems is the simplistic backtracking line search we are using in Optim. As this step becomes more efficient, we expect that the gains from using a function that evaluates the main function and its gradient simultaneously will grow.
There are also top-level methods curve_fit()
and estimate_errors()
that are useful for fitting data to non-linear models. See the following example:
# a two-parameter exponential model
model(xpts, p) = p[1]*exp(-xpts.*p[2])
# some example data
xpts = linspace(0,10,20)
data = model(xpts, [1.0 2.0]) + 0.01*randn(length(xpts))
beta, r, J = curve_fit(model, xpts, data, [0.5, 0.5])
# beta = best fit parameters
# r = vector of residuals
# J = estimated Jacobian at solution
# We can use these values to estimate errors on the fit parameters. To get 95% confidence error bars:
errors = estimate_errors(beta, r, J)
There is a separate suite of tools that implement the nonlinear conjugate gradient method, and there are some additional algorithms built on top of it. Unfortunately, currently these algorithms use a different API. These differences in API are intended to enhance performance. Rather than providing one function for the function value and another for the gradient, here you combine them into a single function. The function must be written to take the gradient as the first input. When the gradient is desired, that first input will be a vector; otherwise, the value nothing
indicates that the gradient is not needed. Let's demonstrate this for the Rosenbrock Function:
function rosenbrock(g, x::Vector)
d1 = 1.0 - x[1]
d2 = x[2] - x[1]^2
if !(g === nothing)
g[1] = -2.0*d1 - 400.0*d2*x[1]
g[2] = 200.0*d2
end
val = d1^2 + 100.0 * d2^2
return val
end
In this example, you can see that we'll save a bit of time by not needing to recompute d1
and d2
in a separate gradient function.
More subtly, it does not require the allocation of a new vector to store the gradient; indeed, the conjugate-gradient algorithm reuses the same block of memory for the gradient on each iteration. While this design has substantial performance advantages, one common "gotcha" is overwriting the gradient array, for example by writing
g = [-2.0*d1 - 400.0*d2*x[1], 200.0*d2]
Internally within rosenbrock
this will appear to work, but the value is not passed back to the calling function and the memory locations for the original g
may contain random values. Perhaps the easiest way to catch this type of error is to check, within rosenbrock
, that the pointer is still the same as it was on entry:
if !(g === nothing)
gptr = pointer(g)
# Code to assign values to g
if pointer(g) != gptr
error("gradient vector overwritten")
end
end
The nonlinear conjugate gradient function is an implementation of an algorithm known as CG-DESCENT (see Citations below):
x0 = [0.0,0.0] # the initial guess
x, fval, fcount, converged = cgdescent(rosenbrock, x0)
Here x
is the solution vector, fval
is a vector of function values after each iteration, fcount
is the number of function evaluations, and converged
is true
if the algorithm converged to within the prescribed tolerance.
The algorithm can be controlled with a wide variety of options:
using OptionsMod
ops = @options display=Optim.ITER fcountmax=1000 tol=1e-5
x, fval, fcount, converged = cgdescent(func, x0, ops)
This will cause it to display its progress at each iteration, limit itself to a maximum of 1000 function evaluations, and use a custom tolerance. There are many more options available, including a wide array of display options; for these, it's best to see the code.
A primal interior-point algorithm for simple "box" constraints (lower and upper bounds) is also available:
l = [1.25, -2.1]
u = [Inf, Inf]
x0 = [2.0, 2.0]
x, fval, fcount, converged = fminbox(rosenbrock, x0, l, u, ops)
This performs optimization with a barrier penalty, successively scaling down the barrier coefficient and using cgdescent
for convergence at each step.
This algorithm uses diagonal preconditioning to improve the accuracy, and hence is a good example of how to use cgdescent
with preconditioning. Only the box constraints are used. If you can analytically compute the diagonal of the Hessian of your objective function, you may want to consider writing your own preconditioner (see nnls
for an example).
Finally, one common application of box-constrained optimization is non-negative least-squares:
A = randn(5,3)
b = randn(size(A, 1))
xnn, fval, fcount, converged = nnls(A, b)
This leverages fminbox and cgdescent; surely one could get even better performance by using an algorithm that takes advantage of this problem's linearity. Despite this, for large problems the performance is quite good compared to Matlab's lsqnonneg
.
For tools for doing linear programming, you should look into the MathProg package.
- Gradient Descent:
gradient_descent()
- Newton's Method:
newton()
- BFGS:
bfgs()
- L-BFGS:
l_bfgs()
- Conjugate Gradient:
cg()
- Nelder-Mead Method:
nelder_mead()
- Simulated Annealing:
simulated_annealing()
- Levenberg-Marquardt:
levenberg_marquardt()
- Nonlinear conjugate-gradient:
cgdescent()
- Box minimization:
fminbox()
- Nonnegative least-squares:
nnls()
- Brent's method
- Linear conjugate gradients
- L-BFGS-B (note that this functionality is already available in fminbox)
W. W. Hager and H. Zhang (2006) Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software 32: 113-137.