-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
596 additions
and
57 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
function [lam] = HelmTilesGalerkin( m, k ) | ||
% Solves the Helmholtz equation using Legedre collocation - weak Galerkin | ||
% spectral method and the Schur complement method for the domain | ||
% decomposition. | ||
n=m; | ||
|
||
% UIUC block-I | ||
adjx=[3 4; 4 5; 6 7; 7 8]; | ||
adjy=[4 2; 2 1; 1 7]; | ||
|
||
% L-shaped membrane | ||
adjx=[2 1]; | ||
adjy=[3 1]; | ||
|
||
% Topology | ||
[topo,net,RL,TB]=ddtopo(adjx,adjy); | ||
pos=ddpatches(topo); | ||
x0=real(pos); | ||
y0=imag(pos); | ||
|
||
% Degrees of freedom | ||
rd1=[1,m]; | ||
rd2=[1,n]; | ||
kd1=2:m-1; | ||
kd2=2:n-1; | ||
|
||
% Schur complement | ||
[S,H,gf,K1,K2,M1,M2,x,y]=ddschurGalerkin(adjx,adjy,m,n,ones(2,2),zeros(2,2)); | ||
[Lschur, Uschur, pschur]=lu(S,'vector'); | ||
|
||
figure(2); | ||
imagesc(log(abs(S))); | ||
colormap(gray(256)); colorbar; axis square; | ||
drawnow; | ||
|
||
|
||
% Poisson solver | ||
function [u]=poissonTiles(F) | ||
F=reshape(F, m, n, []); | ||
v=cell([size(net,1),1]); | ||
for j=1:size(net,1) | ||
v{j}=gf(F(:,:,j),zeros(2,n-2),zeros(m-2,2)); | ||
end | ||
|
||
rhs=zeros(m-2, size(RL,1)+size(TB,1)); | ||
for j=1:size(RL,1) | ||
rhs(:,RL(j,1))=M1(rd1(2),:)*F(:, :, adjx(j,1))*M2(kd2,:)'/2 + M1(rd1(1),:)*F(:, :, adjx(j,2))*M2(kd2,:)'/2 + ... | ||
-(M1(rd1(2),:)*(v{adjx(j,1)})*K2(kd2,:)'+K1(rd1(2),:)*(v{adjx(j,1)})*M2(kd2,:)' + ... | ||
M1(rd1(1),:)*(v{adjx(j,2)})*K2(kd2,:)'+K1(rd1(1),:)*(v{adjx(j,2)})*M2(kd2,:)'); | ||
end | ||
for j=1:size(TB,1) | ||
rhs(:,TB(j,1))=M1(kd1,:)*F(:, :, adjy(j,1))*M2(rd2(2),:)'/2 + M1(kd1,:)*F(:, :, adjy(j,2))*M2(rd2(1),:)'/2 + ... | ||
-(K1(kd1,:)*(v{adjy(j,1)})*M2(rd2(2),:)'+M1(kd1,:)*(v{adjy(j,1)})*K2(rd2(2),:)'+... | ||
K1(kd1,:)*(v{adjy(j,2)})*M2(rd2(1),:)'+M1(kd1,:)*(v{adjy(j,2)})*K2(rd2(1),:)'); | ||
end | ||
rhs=rhs(:); | ||
|
||
% Solve for boundary nodes | ||
b=Uschur\(Lschur\rhs(pschur)); | ||
b=reshape(b, m-2, []); | ||
b=[b, zeros(m-2,1)]; | ||
|
||
% Solve for interior nodes with the given BCs | ||
u=zeros(size(F)); | ||
for j=1:size(net,1) | ||
u(:,:,j)=gf(F(:,:,j), b(:,net(j,1:2))', b(:,net(j,3:4))); | ||
end | ||
u=u(:); | ||
end | ||
|
||
% Compute eigenmodes using Arnoldi iteration | ||
[U,lam]=eigs(@poissonTiles, size(net,1)*(m*n), k, 'sm'); | ||
[lam,id]=sort(real(diag(lam)),'ascend'); | ||
U=U(:,id); | ||
|
||
um=reshape(U, m, n, [], k); | ||
uuu=permute(um,[1,2,4,3]); | ||
|
||
[xx,yy]=ndgrid(x,y); | ||
|
||
figure(1); zoom off; pan off; rotate3d off; | ||
for i=1:size(uuu,4) | ||
modegallery(xx+x0(i),yy+y0(i),uuu(:,:,:,i)); | ||
if i==1, hold on; end; | ||
end | ||
hold off; | ||
colormap(jet(256)); shading interp; camlight; view(2); | ||
xl=xlim(); dx=xl(2)-xl(1); | ||
yl=ylim(); dy=yl(2)-yl(1); | ||
pbaspect([dx,dy,min(dx,dy)]); | ||
xlabel('x'); ylabel('y'); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
function [S,H,gf,K1,K2,M1,M2,x,y] = ddschurGalerkin(adjx,adjy,m,n,a,b) | ||
% Computes the Schur complement for a separable operator kron(M2,K1)+kron(K2,M1) | ||
rd1=[1,m]; | ||
rd2=[1,n]; | ||
kd1=2:m-1; | ||
kd2=2:n-1; | ||
east =rd1(1); | ||
west =rd1(2); | ||
north=rd2(1); | ||
south=rd2(2); | ||
|
||
[K1,M1,E1,V1,L1,x]=GalerkinGLL(m,a(1,:),b(1,:)); | ||
[K2,M2,E2,V2,L2,y]=GalerkinGLL(n,a(2,:),b(2,:)); | ||
[Lx,Ly]=ndgrid(L1,L2); | ||
LL=1./(Lx+Ly); | ||
LL((Lx==0)|(Ly==0))=0; | ||
function uu=greenF(F,b1,b2) | ||
uu=zeros(m,n); | ||
uu(rd1,kd2)=b1; | ||
uu(kd1,rd2)=b2; | ||
rhs=M1*F*M2'-(K1*uu*M2'+M1*uu*K2'); | ||
uu(kd1,kd2)=V1(kd1,kd1)*((V1(kd1,kd1)'*rhs(kd1,kd2)*V2(kd2,kd2)).*LL)*V2(kd2,kd2)'; | ||
uu=E1*uu*E2'; | ||
end | ||
gf=@(F,b1,b2) greenF(F,b1,b2); | ||
|
||
% Schur complement matrix | ||
|
||
% Building blocks | ||
|
||
Q1=M1(kd1,kd1)*V1(kd1,kd1); | ||
Q2=M2(kd2,kd2)*V2(kd2,kd2); | ||
|
||
% S11 | ||
p1=[east,east,west,west]; | ||
p2=[east,west,east,west]; | ||
VTML=V1(kd1,kd1)'*M1(p1,kd1)'; | ||
VTKL=V1(kd1,kd1)'*K1(p1,kd1)'; | ||
VTMR=V1(kd1,kd1)'*M1(kd1,p2) ; | ||
VTKR=V1(kd1,kd1)'*K1(kd1,p2) ; | ||
MM=VTML.*VTMR; | ||
MK=VTML.*VTKR; | ||
KM=VTKL.*VTMR; | ||
KK=VTKL.*VTKR; | ||
DXX=diag(L2.^2)*(LL'*MM)+diag(L2)*(LL'*(MK+KM))+(LL'*KK); | ||
EE=Q2*diag(DXX(:,1))*Q2'; | ||
EW=Q2*diag(DXX(:,2))*Q2'; | ||
WE=Q2*diag(DXX(:,3))*Q2'; | ||
WW=Q2*diag(DXX(:,4))*Q2'; | ||
|
||
% S22 | ||
p1=[north,north,south,south]; | ||
p2=[north,south,north,south]; | ||
VTML=V2(kd2,kd2)'*M2(p1,kd2)'; | ||
VTKL=V2(kd2,kd2)'*K2(p1,kd2)'; | ||
VTMR=V2(kd2,kd2)'*M2(kd2,p2) ; | ||
VTKR=V2(kd2,kd2)'*K2(kd2,p2) ; | ||
MM=VTML.*VTMR; | ||
MK=VTML.*VTKR; | ||
KM=VTKL.*VTMR; | ||
KK=VTKL.*VTKR; | ||
DYY=diag(L1.^2)*(LL*MM)+diag(L1)*(LL*(MK+KM))+(LL*KK); | ||
NN=Q1*diag(DYY(:,1))*Q1'; | ||
NS=Q1*diag(DYY(:,2))*Q1'; | ||
SN=Q1*diag(DYY(:,3))*Q1'; | ||
SS=Q1*diag(DYY(:,4))*Q1'; | ||
|
||
% S12 | ||
p1=[east, east, west, west ]; | ||
p2=[north,south,north,south]; | ||
VTML=V1(kd1,kd1)'*M1(p1,kd1)'; | ||
VTKL=V1(kd1,kd1)'*K1(p1,kd1)'; | ||
VTMR=V2(kd2,kd2)'*M2(kd2,p2) ; | ||
VTKR=V2(kd2,kd2)'*K2(kd2,p2) ; | ||
U=[L2.*VTMR, VTMR, L2.*VTKR, VTKR]; | ||
V=[L1.*VTML, L1.*VTKL, VTML, VTKL]; | ||
EN=Q1*((U(:,1:4:end)*V(:,1:4:end)').*LL')*Q2'; | ||
ES=Q1*((U(:,2:4:end)*V(:,2:4:end)').*LL')*Q2'; | ||
WN=Q1*((U(:,3:4:end)*V(:,3:4:end)').*LL')*Q2'; | ||
WS=Q1*((U(:,4:4:end)*V(:,4:4:end)').*LL')*Q2'; | ||
|
||
% S21 | ||
p1=[north,north,south,south]; | ||
p2=[east, west, east, west ]; | ||
VTML=V2(kd2,kd2)'*M2(p1,kd2)'; | ||
VTKL=V2(kd2,kd2)'*K2(p1,kd2)'; | ||
VTMR=V1(kd1,kd1)'*M1(kd1,p2) ; | ||
VTKR=V1(kd1,kd1)'*K1(kd1,p2) ; | ||
U=[L1.*VTMR, VTMR, L1.*VTKR, VTKR]; | ||
V=[L2.*VTML, L2.*VTKL, VTML, VTKL]; | ||
NE=Q2*((U(:,1:4:end)*V(:,1:4:end)').*LL)*Q1'; | ||
NW=Q2*((U(:,2:4:end)*V(:,2:4:end)').*LL)*Q1'; | ||
SE=Q2*((U(:,3:4:end)*V(:,3:4:end)').*LL)*Q1'; | ||
SW=Q2*((U(:,4:4:end)*V(:,4:4:end)').*LL)*Q1'; | ||
|
||
% Assembly | ||
|
||
% S11 | ||
[x1,y1]=ndgrid(adjx(:,1), adjx(:,1)); | ||
[x2,y2]=ndgrid(adjx(:,2), adjx(:,2)); | ||
|
||
S11=sparse((n-2)*size(adjx,1),(n-2)*size(adjx,1)); | ||
S11=S11+kron(sparse(x2==y2), -EE+M1(east,east)*K2(kd2,kd2)+K1(east,east)*M2(kd2,kd2)); | ||
S11=S11+kron(sparse(x2==y1), -EW+M1(east,west)*K2(kd2,kd2)+K1(east,west)*M2(kd2,kd2)); | ||
S11=S11+kron(sparse(x1==y2), -WE+M1(west,east)*K2(kd2,kd2)+K1(west,east)*M2(kd2,kd2)); | ||
S11=S11+kron(sparse(x1==y1), -WW+M1(west,west)*K2(kd2,kd2)+K1(west,west)*M2(kd2,kd2)); | ||
|
||
% S22 | ||
[x1,y1]=ndgrid(adjy(:,1), adjy(:,1)); | ||
[x2,y2]=ndgrid(adjy(:,2), adjy(:,2)); | ||
|
||
S22=sparse((m-2)*size(adjy,1),(m-2)*size(adjy,1)); | ||
S22=S22+kron(sparse(x2==y2), -NN+M2(north,north)*K1(kd1,kd1)+K2(north,north)*M1(kd1,kd1)); | ||
S22=S22+kron(sparse(x2==y1), -NS+M2(north,south)*K1(kd1,kd1)+K2(north,south)*M1(kd1,kd1)); | ||
S22=S22+kron(sparse(x1==y2), -SN+M2(south,north)*K1(kd1,kd1)+K2(south,north)*M1(kd1,kd1)); | ||
S22=S22+kron(sparse(x1==y1), -SS+M2(south,south)*K1(kd1,kd1)+K2(south,south)*M1(kd1,kd1)); | ||
|
||
|
||
% S12 | ||
[x1,y1]=ndgrid(adjx(:,1), adjy(:,1)); | ||
[x2,y2]=ndgrid(adjx(:,2), adjy(:,2)); | ||
|
||
S12=sparse((n-2)*size(adjx,1),(m-2)*size(adjy,1)); | ||
S12=S12+kron(sparse(x2==y2), -EN+M2(kd2,north)*K1(east,kd1)+K2(kd2,north)*M1(east,kd1)); | ||
S12=S12+kron(sparse(x2==y1), -ES+M2(kd2,south)*K1(east,kd1)+K2(kd2,south)*M1(east,kd1)); | ||
S12=S12+kron(sparse(x1==y2), -WN+M2(kd2,north)*K1(west,kd1)+K2(kd2,north)*M1(west,kd1)); | ||
S12=S12+kron(sparse(x1==y1), -WS+M2(kd2,south)*K1(west,kd1)+K2(kd2,south)*M1(west,kd1)); | ||
|
||
% S21 | ||
[y1,x1]=ndgrid(adjy(:,1), adjx(:,1)); | ||
[y2,x2]=ndgrid(adjy(:,2), adjx(:,2)); | ||
|
||
S21=sparse((m-2)*size(adjy,1),(n-2)*size(adjx,1)); | ||
S21=S21+kron(sparse(y2==x2), -NE+M1(kd1,east)*K2(north,kd2)+K1(kd1,east)*M2(north,kd2)); | ||
S21=S21+kron(sparse(y2==x1), -NW+M1(kd1,west)*K2(north,kd2)+K1(kd1,west)*M2(north,kd2)); | ||
S21=S21+kron(sparse(y1==x2), -SE+M1(kd1,east)*K2(south,kd2)+K1(kd1,east)*M2(south,kd2)); | ||
S21=S21+kron(sparse(y1==x1), -SW+M1(kd1,west)*K2(south,kd2)+K1(kd1,west)*M2(south,kd2)); | ||
|
||
id1=1:(n-2)*size(adjx,1); | ||
id2=(n-2)*size(adjx,1)+(1:(m-2)*size(adjy,1)); | ||
|
||
sz=(n-2)*size(adjx,1)+(m-2)*size(adjy,1); | ||
S=sparse(sz,sz); | ||
S(id1,id1)=S11; | ||
S(id1,id2)=S12; | ||
S(id2,id1)=S21; | ||
S(id2,id2)=S22; | ||
|
||
H=0; | ||
end | ||
|
||
|
||
function [K, M, E, V, L, x]=GalerkinGLL(m,a,b) | ||
% Stiffness and mass matrices for a Gauss-Legendre-Lobatto nodal basis over | ||
% the interval [-1,1] with Robin BCs specified in a and b. | ||
I=eye(m); % Identity | ||
kd=2:m-1; % kept DOFs | ||
rd=[1,m]; % removed DOFs | ||
[D,x,w]=legD(m); | ||
D=D(end:-1:1,end:-1:1); % Differentiation matrix | ||
x=x(end:-1:1); % Collocation nodes | ||
w=w(end:-1:1); % Quadrature | ||
C=diag(a)*I(rd,:)+diag(b)*D(rd,:); % Constraint operator | ||
|
||
% Constrained basis | ||
E=eye(m); | ||
E(rd,kd)=-C(:,kd); | ||
E(rd,:)=C(:,rd)\E(rd,:); | ||
|
||
% Primed basis | ||
DE=D*E; | ||
|
||
% Mass matrix | ||
V=VandermondeLeg(x); | ||
Minv=(V*V'); | ||
M=E'*(Minv\E); | ||
|
||
% Stiffness matrix | ||
K=DE'*diag(w)*DE-E(rd,:)'*diag([-1,1])*DE(rd,:); | ||
|
||
% Eigenfunctions | ||
V=zeros(m); | ||
[V(kd,kd),L]=eig(K(kd,kd), M(kd,kd), 'vector'); | ||
V(kd,kd)=normc(V(kd,kd), M(kd,kd)); | ||
V(rd,kd)=E(rd,kd)*V(kd,kd); | ||
end |
Oops, something went wrong.