Skip to content

Commit

Permalink
Fix multiplication of AbstractQs (JuliaLang#46237)
Browse files Browse the repository at this point in the history
  • Loading branch information
dkarrasch authored Aug 22, 2022
1 parent baa85f4 commit 947c908
Show file tree
Hide file tree
Showing 3 changed files with 29 additions and 16 deletions.
4 changes: 2 additions & 2 deletions stdlib/LinearAlgebra/src/qr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -380,9 +380,9 @@ norm solution.
Multiplication with respect to either full/square or non-full/square `Q` is allowed, i.e. both `F.Q*F.R`
and `F.Q*A` are supported. A `Q` matrix can be converted into a regular matrix with
[`Matrix`](@ref). This operation returns the "thin" Q factor, i.e., if `A` is `m`×`n` with `m>=n`, then
[`Matrix`](@ref). This operation returns the "thin" Q factor, i.e., if `A` is `m`×`n` with `m>=n`, then
`Matrix(F.Q)` yields an `m`×`n` matrix with orthonormal columns. To retrieve the "full" Q factor, an
`m`×`m` orthogonal matrix, use `F.Q*Matrix(I,m,m)`. If `m<=n`, then `Matrix(F.Q)` yields an `m`×`m`
`m`×`m` orthogonal matrix, use `F.Q*I`. If `m<=n`, then `Matrix(F.Q)` yields an `m`×`m`
orthogonal matrix.
The block size for QR decomposition can be specified by keyword argument
Expand Down
8 changes: 4 additions & 4 deletions stdlib/LinearAlgebra/src/special.jl
Original file line number Diff line number Diff line change
Expand Up @@ -347,10 +347,10 @@ end
*(A::Diagonal, Q::AbstractQ) = _qrmul(A, Q)
*(A::Diagonal, Q::Adjoint{<:Any,<:AbstractQ}) = _qrmul(A, Q)

*(Q::AbstractQ, B::AbstractQ) = _qlmul(Q, B)
*(Q::Adjoint{<:Any,<:AbstractQ}, B::AbstractQ) = _qrmul(Q, B)
*(Q::AbstractQ, B::Adjoint{<:Any,<:AbstractQ}) = _qlmul(Q, B)
*(Q::Adjoint{<:Any,<:AbstractQ}, B::Adjoint{<:Any,<:AbstractQ}) = _qrmul(Q, B)
*(Q::AbstractQ, B::AbstractQ) = Q * (B * I)
*(Q::Adjoint{<:Any,<:AbstractQ}, B::AbstractQ) = Q * (B * I)
*(Q::AbstractQ, B::Adjoint{<:Any,<:AbstractQ}) = Q * (B * I)
*(Q::Adjoint{<:Any,<:AbstractQ}, B::Adjoint{<:Any,<:AbstractQ}) = Q * (B * I)

# fill[stored]! methods
fillstored!(A::Diagonal, x) = (fill!(A.diag, x); A)
Expand Down
33 changes: 23 additions & 10 deletions stdlib/LinearAlgebra/test/special.jl
Original file line number Diff line number Diff line change
Expand Up @@ -215,16 +215,29 @@ end
atri = typ(a)
matri = Matrix(atri)
b = rand(n,n)
qrb = qr(b, ColumnNorm())
@test atri * qrb.Q matri * qrb.Q rmul!(copy(atri), qrb.Q)
@test atri * qrb.Q' matri * qrb.Q' rmul!(copy(atri), qrb.Q')
@test qrb.Q * atri qrb.Q * matri lmul!(qrb.Q, copy(atri))
@test qrb.Q' * atri qrb.Q' * matri lmul!(qrb.Q', copy(atri))
qrb = qr(b, NoPivot())
@test atri * qrb.Q matri * qrb.Q rmul!(copy(atri), qrb.Q)
@test atri * qrb.Q' matri * qrb.Q' rmul!(copy(atri), qrb.Q')
@test qrb.Q * atri qrb.Q * matri lmul!(qrb.Q, copy(atri))
@test qrb.Q' * atri qrb.Q' * matri lmul!(qrb.Q', copy(atri))
for pivot in (ColumnNorm(), NoPivot())
qrb = qr(b, pivot)
@test atri * qrb.Q matri * qrb.Q rmul!(copy(atri), qrb.Q)
@test atri * qrb.Q' matri * qrb.Q' rmul!(copy(atri), qrb.Q')
@test qrb.Q * atri qrb.Q * matri lmul!(qrb.Q, copy(atri))
@test qrb.Q' * atri qrb.Q' * matri lmul!(qrb.Q', copy(atri))
end
end
end

@testset "Multiplication of Qs" begin
for pivot in (ColumnNorm(), NoPivot()), A in (rand(5, 3), rand(5, 5), rand(3, 5))
Q = qr(A, pivot).Q
m = size(A, 1)
C = Matrix{Float64}(undef, (m, m))
@test Q*Q (Q*I) * (Q*I) mul!(C, Q, Q)
@test size(Q*Q) == (m, m)
@test Q'Q (Q'*I) * (Q*I) mul!(C, Q', Q)
@test size(Q'Q) == (m, m)
@test Q*Q' (Q*I) * (Q'*I) mul!(C, Q, Q')
@test size(Q*Q') == (m, m)
@test Q'Q' (Q'*I) * (Q'*I) mul!(C, Q', Q')
@test size(Q'Q') == (m, m)
end
end

Expand Down

0 comments on commit 947c908

Please sign in to comment.