Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update vector search docs #18779

Merged
merged 54 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
Show all changes
54 commits
Select commit Hold shift + click to select a range
ac62eef
reuse vector search docs
qiancai Sep 2, 2024
47e1f70
move vector search files
qiancai Sep 3, 2024
209809b
change the links to vector search docs
qiancai Sep 3, 2024
0d48eda
fix broken links
qiancai Sep 3, 2024
3aa8797
fix broken links
qiancai Sep 3, 2024
868489b
Merge remote-tracking branch 'upstream/master' into reuse-vector-sear…
qiancai Sep 18, 2024
d31bbb1
Merge remote-tracking branch 'upstream/master' into reuse-vector-sear…
qiancai Sep 19, 2024
e035fd4
add vector search index
qiancai Sep 19, 2024
c6fa2b3
Update vector-search-data-types.md
qiancai Sep 19, 2024
766eccd
Update vector-search-functions-and-operators.md
qiancai Sep 20, 2024
088ec47
Update vector-search-overview.md
qiancai Sep 20, 2024
0bf4cba
update the getting started docs
qiancai Sep 23, 2024
c29d773
Update vector-search-improve-performance.md
qiancai Sep 23, 2024
8971f31
Update vector-search-index.md
qiancai Sep 23, 2024
ce06144
sync from zh
qiancai Sep 23, 2024
93fb40a
syn from zh
qiancai Sep 24, 2024
aff12a5
update the dimension limit to 16383
qiancai Sep 24, 2024
4aa3caf
Update desc about tiflash upgrade
JaySon-Huang Sep 27, 2024
fa0bf4b
Apply suggestions from code review
qiancai Oct 9, 2024
bffec9a
Update format
lilin90 Oct 10, 2024
7178fdf
Remove description about future features
lilin90 Oct 10, 2024
a301f35
Update wording
lilin90 Oct 10, 2024
9300246
Update wording
lilin90 Oct 10, 2024
936d342
make "USING HNSW" as default
JaySon-Huang Oct 10, 2024
a4b4e0f
Using upper case VEC_COSINE_DISTANCE instead
JaySon-Huang Oct 10, 2024
49f624c
Apply suggestions from code review
qiancai Oct 14, 2024
5ddb8cf
update parameter order and serverless doc link
qiancai Oct 14, 2024
f992a57
remove "or removed" from the experimental warning
qiancai Oct 14, 2024
151928d
add compatibility translatons
qiancai Oct 15, 2024
1345c42
Update TOC.md
qiancai Oct 15, 2024
c8aa18a
sync from https://github.com/pingcap/docs-cn/pull/18502/commits
qiancai Oct 15, 2024
cc9c655
vector-search-limitations: sync zh changes to en
qiancai Oct 16, 2024
74f0f92
Update vector-search-index.md
qiancai Oct 16, 2024
6a193b6
vector-search-index: sync zh new changes
qiancai Oct 16, 2024
985288b
Update vector-search-limitations.md
qiancai Oct 17, 2024
bc684fb
remove an extra line
qiancai Oct 17, 2024
1138780
reomove an unnecessary line
qiancai Oct 17, 2024
cb7e4dc
Update vector-search-data-types.md
qiancai Oct 17, 2024
7420d1a
vector-search-integrate-with-llamaindex: add missing content
qiancai Oct 17, 2024
247313e
Update vector-search-index.md
qiancai Oct 17, 2024
b1eb27a
Apply suggestions from code review
qiancai Oct 18, 2024
4a41fd2
sync zh (remove ORM instructions)
qiancai Oct 21, 2024
13afe91
remove ORM files
qiancai Oct 21, 2024
9de92fd
fix broken links
qiancai Oct 21, 2024
1c821e4
add version info for self-managed clusters
qiancai Oct 21, 2024
0ac80c1
Revert "remove ORM files"
qiancai Oct 21, 2024
79eba98
Revert "sync zh (remove ORM instructions)"
qiancai Oct 21, 2024
22d2a12
revert removing ORM
qiancai Oct 21, 2024
6ac2bd4
django/peewee/sqlalchemy: add self-managed version info
qiancai Oct 21, 2024
f3645cd
django/peewee/sqlalchemy: remove "Define a vector column optimized wi…
qiancai Oct 21, 2024
31b579c
update cloud info
qiancai Oct 22, 2024
01c6af2
vector-search-index: sync from zh changes
qiancai Oct 22, 2024
fd72a10
Apply suggestions from code review
qiancai Oct 23, 2024
06e4be1
Apply suggestions from code review
qiancai Oct 23, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 15 additions & 15 deletions TOC-tidb-cloud.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
- [Roadmap](/tidb-cloud/tidb-cloud-roadmap.md)
- Get Started
- [Try Out TiDB Cloud](/tidb-cloud/tidb-cloud-quickstart.md)
- [Try Out TiDB + AI](/tidb-cloud/vector-search-get-started-using-python.md)
- [Try Out TiDB + AI](/vector-search-get-started-using-python.md)
- [Try Out HTAP](/tidb-cloud/tidb-cloud-htap-quickstart.md)
- [Try Out TiDB Cloud CLI](/tidb-cloud/get-started-with-cli.md)
- [Perform a PoC](/tidb-cloud/tidb-cloud-poc.md)
Expand Down Expand Up @@ -241,27 +241,27 @@
- Explore Data
- [Chat2Query (Beta) in SQL Editor](/tidb-cloud/explore-data-with-chat2query.md)
- Vector Search (Beta)
- [Overview](/tidb-cloud/vector-search-overview.md)
- [Overview](/vector-search-overview.md)
- Get Started
- [Get Started with SQL](/tidb-cloud/vector-search-get-started-using-sql.md)
- [Get Started with Python](/tidb-cloud/vector-search-get-started-using-python.md)
- [Get Started with SQL](/vector-search-get-started-using-sql.md)
- [Get Started with Python](/vector-search-get-started-using-python.md)
- Integrations
- [Overview](/tidb-cloud/vector-search-integration-overview.md)
- [Overview](/vector-search-integration-overview.md)
- AI Frameworks
- [LlamaIndex](/tidb-cloud/vector-search-integrate-with-llamaindex.md)
- [Langchain](/tidb-cloud/vector-search-integrate-with-langchain.md)
- [LlamaIndex](/vector-search-integrate-with-llamaindex.md)
- [Langchain](/vector-search-integrate-with-langchain.md)
- Embedding Models/Services
- [Jina AI](/tidb-cloud/vector-search-integrate-with-jinaai-embedding.md)
- [Jina AI](/vector-search-integrate-with-jinaai-embedding.md)
- ORM Libraries
- [SQLAlchemy](/tidb-cloud/vector-search-integrate-with-sqlalchemy.md)
- [peewee](/tidb-cloud/vector-search-integrate-with-peewee.md)
- [Django ORM](/tidb-cloud/vector-search-integrate-with-django-orm.md)
- [SQLAlchemy](/vector-search-integrate-with-sqlalchemy.md)
- [peewee](/vector-search-integrate-with-peewee.md)
- [Django ORM](/vector-search-integrate-with-django-orm.md)
- Reference
- [Vector Data Types](/tidb-cloud/vector-search-data-types.md)
- [Vector Functions and Operators](/tidb-cloud/vector-search-functions-and-operators.md)
- [Vector Data Types](/vector-search-data-types.md)
- [Vector Functions and Operators](/vector-search-functions-and-operators.md)
- [Vector Index](/tidb-cloud/vector-search-index.md)
- [Improve Performance](/tidb-cloud/vector-search-improve-performance.md)
- [Limitations](/tidb-cloud/vector-search-limitations.md)
- [Improve Performance](/vector-search-improve-performance.md)
- [Limitations](/vector-search-limitations.md)
- [Changelogs](/tidb-cloud/vector-search-changelogs.md)
- Data Service (Beta)
- [Overview](/tidb-cloud/data-service-overview.md)
Expand Down
2 changes: 1 addition & 1 deletion tidb-cloud/data-service-manage-endpoint.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ In TiDB Cloud Data Service, you can generate one or multiple endpoints automatic

For each operation you select, TiDB Cloud Data Service will generate a corresponding endpoint. If you select a batch operation (such as `POST (Batch Create)`), the generated endpoint lets you operate on multiple rows in a single request.

If the table you selected contains [vector data types](/tidb-cloud/vector-search-data-types.md), you can enable the **Vector Search Operations** option and select a vector distance function to generate a vector search endpoint that automatically calculates vector distances based on your selected distance function. The supported [vector distance functions](/tidb-cloud/vector-search-functions-and-operators.md) include the following:
If the table you selected contains [vector data types](/vector-search-data-types.md), you can enable the **Vector Search Operations** option and select a vector distance function to generate a vector search endpoint that automatically calculates vector distances based on your selected distance function. The supported [vector distance functions](/vector-search-functions-and-operators.md) include the following:

- `VEC_L2_DISTANCE` (default): calculates the L2 distance (Euclidean distance) between two vectors.
- `VEC_COSINE_DISTANCE`: calculates the cosine distance between two vectors.
Expand Down
12 changes: 6 additions & 6 deletions tidb-cloud/tidb-cloud-release-notes.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ This page lists the release notes of [TiDB Cloud](https://www.pingcap.com/tidb-c

- [Data Service (beta)](https://tidbcloud.com/console/data-service) supports automatically generating vector search endpoints.

If your table contains [vector data types](/tidb-cloud/vector-search-data-types.md), you can automatically generate a vector search endpoint that calculates vector distances based on your selected distance function.
If your table contains [vector data types](/vector-search-data-types.md), you can automatically generate a vector search endpoint that calculates vector distances based on your selected distance function.

This feature enables seamless integration with AI platforms such as [Dify](https://docs.dify.ai/guides/tools) and [GPTs](https://openai.com/blog/introducing-gpts), enhancing your applications with advanced natural language processing and AI capabilities for more complex tasks and intelligent solutions.

Expand Down Expand Up @@ -86,12 +86,12 @@ This page lists the release notes of [TiDB Cloud](https://www.pingcap.com/tidb-c

The vector search (beta) feature provides an advanced search solution for performing semantic similarity searches across various data types, including documents, images, audio, and video. This feature enables developers to easily build scalable applications with generative artificial intelligence (AI) capabilities using familiar MySQL skills. Key features include:

- [Vector data types](/tidb-cloud/vector-search-data-types.md), [vector index](/tidb-cloud/vector-search-index.md), and [vector functions and operators](/tidb-cloud/vector-search-functions-and-operators.md).
- Ecosystem integrations with [LangChain](/tidb-cloud/vector-search-integrate-with-langchain.md), [LlamaIndex](/tidb-cloud/vector-search-integrate-with-llamaindex.md), and [JinaAI](/tidb-cloud/vector-search-integrate-with-jinaai-embedding.md).
- Programming language support for Python: [SQLAlchemy](/tidb-cloud/vector-search-integrate-with-sqlalchemy.md), [Peewee](/tidb-cloud/vector-search-integrate-with-peewee.md), and [Django ORM](/tidb-cloud/vector-search-integrate-with-django-orm.md).
- Sample applications and tutorials: perform semantic searches for documents using [Python](/tidb-cloud/vector-search-get-started-using-python.md) or [SQL](/tidb-cloud/vector-search-get-started-using-sql.md).
- [Vector data types](/vector-search-data-types.md), [vector index](/tidb-cloud/vector-search-index.md), and [vector functions and operators](/vector-search-functions-and-operators.md).
- Ecosystem integrations with [LangChain](/vector-search-integrate-with-langchain.md), [LlamaIndex](/vector-search-integrate-with-llamaindex.md), and [JinaAI](/vector-search-integrate-with-jinaai-embedding.md).
- Programming language support for Python: [SQLAlchemy](/vector-search-integrate-with-sqlalchemy.md), [Peewee](/vector-search-integrate-with-peewee.md), and [Django ORM](/vector-search-integrate-with-django-orm.md).
- Sample applications and tutorials: perform semantic searches for documents using [Python](/vector-search-get-started-using-python.md) or [SQL](/vector-search-get-started-using-sql.md).

For more information, see [Vector search (beta) overview](/tidb-cloud/vector-search-overview.md).
For more information, see [Vector search (beta) overview](/vector-search-overview.md).

- [TiDB Serverless](/tidb-cloud/select-cluster-tier.md#tidb-serverless) now offers weekly email reports for organization owners.

Expand Down
14 changes: 7 additions & 7 deletions tidb-cloud/vector-search-index.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ summary: Learn how to build and use the vector search index to accelerate K-Near

K-nearest neighbors (KNN) search is the problem of finding the K closest points for a given point in a vector space. The most straightforward approach to solving this problem is a brute force search, where the distance between all points in the vector space and the reference point is computed. This method guarantees perfect accuracy, but it is usually too slow for practical applications. Thus, nearest neighbors search problems are often solved with approximate algorithms.

In TiDB, you can create and utilize vector search indexes for such approximate nearest neighbor (ANN) searches over columns with [vector data types](/tidb-cloud/vector-search-data-types.md). By using vector search indexes, vector search queries could be finished in milliseconds.
In TiDB, you can create and utilize vector search indexes for such approximate nearest neighbor (ANN) searches over columns with [vector data types](/vector-search-data-types.md). By using vector search indexes, vector search queries could be finished in milliseconds.

TiDB currently supports the following vector search index algorithms:

Expand All @@ -21,7 +21,7 @@ TiDB currently supports the following vector search index algorithms:

[HNSW](https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world) is one of the most popular vector indexing algorithms. The HNSW index provides good performance with relatively high accuracy (> 98% in typical cases).

To create an HNSW vector index, specify the index definition in the comment of a column with a [vector data type](/tidb-cloud/vector-search-data-types.md) when creating the table:
To create an HNSW vector index, specify the index definition in the comment of a column with a [vector data type](/vector-search-data-types.md) when creating the table:

```sql
CREATE TABLE vector_table_with_index (
Expand All @@ -44,9 +44,9 @@ The vector index can only be created for fixed-dimensional vector columns like `
If you are using programming language SDKs or ORMs, refer to the following documentation for creating vector indexes:

- Python: [TiDB Vector SDK for Python](https://github.com/pingcap/tidb-vector-python)
- Python: [SQLAlchemy](/tidb-cloud/vector-search-integrate-with-sqlalchemy.md)
- Python: [Peewee](/tidb-cloud/vector-search-integrate-with-peewee.md)
- Python: [Django](/tidb-cloud/vector-search-integrate-with-django-orm.md)
- Python: [SQLAlchemy](/vector-search-integrate-with-sqlalchemy.md)
- Python: [Peewee](/vector-search-integrate-with-peewee.md)
- Python: [Django](/vector-search-integrate-with-django-orm.md)

Be aware of the following limitations when creating the vector index. These limitations might be removed in future releases:

Expand Down Expand Up @@ -270,5 +270,5 @@ See [`EXPLAIN`](/sql-statements/sql-statement-explain.md), [`EXPLAIN ANALYZE`](/

## See also

- [Improve Vector Search Performance](/tidb-cloud/vector-search-improve-performance.md)
- [Vector Data Types](/tidb-cloud/vector-search-data-types.md)
- [Improve Vector Search Performance](/vector-search-improve-performance.md)
- [Vector Data Types](/vector-search-data-types.md)
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ As dimension 3 is enforced for the `embedding` column in the preceding example,
ERROR 1105 (HY000): vector has 2 dimensions, does not fit VECTOR(3)
```

See [Vector Functions and Operators](/tidb-cloud/vector-search-functions-and-operators.md) for available functions and operators over the Vector data type.
See [Vector Functions and Operators](/vector-search-functions-and-operators.md) for available functions and operators over the Vector data type.

See [Vector Search Index](/tidb-cloud/vector-search-index.md) for building and using a vector search index.

Expand All @@ -79,7 +79,7 @@ However you cannot build a [Vector Search Index](/tidb-cloud/vector-search-index

## Comparison

You can compare vector data types using [comparison operators](/functions-and-operators/operators.md) such as `=`, `!=`, `<`, `>`, `<=`, and `>=`. For a complete list of comparison operators and functions for vector data types, see [Vector Functions and Operators](/tidb-cloud/vector-search-functions-and-operators.md).
You can compare vector data types using [comparison operators](/functions-and-operators/operators.md) such as `=`, `!=`, `<`, `>`, `<=`, and `>=`. For a complete list of comparison operators and functions for vector data types, see [Vector Functions and Operators](/vector-search-functions-and-operators.md).

Vector data types are compared element-wise numerically. Examples:

Expand Down Expand Up @@ -228,7 +228,7 @@ To cast vector into its string representation explicitly, use the `VEC_AS_TEXT()
1 row in set (0.01 sec)
```

For additional cast functions, see [Vector Functions and Operators](/tidb-cloud/vector-search-functions-and-operators.md).
For additional cast functions, see [Vector Functions and Operators](/vector-search-functions-and-operators.md).

### Cast between Vector ⇔ other data types

Expand All @@ -240,14 +240,14 @@ It is currently not possible to cast between Vector and other data types (like `
- You cannot store `NaN`, `Infinity`, or `-Infinity` values in the vector data type.
- Currently Vector data types cannot store double-precision floating numbers. This will be supported in future release.

For other limitations, see [Vector Search Limitations](/tidb-cloud/vector-search-limitations.md).
For other limitations, see [Vector Search Limitations](/vector-search-limitations.md).

## MySQL compatibility

Vector data types are TiDB specific, and are not supported in MySQL.

## See also

- [Vector Functions and Operators](/tidb-cloud/vector-search-functions-and-operators.md)
- [Vector Functions and Operators](/vector-search-functions-and-operators.md)
- [Vector Search Index](/tidb-cloud/vector-search-index.md)
- [Improve Vector Search Performance](/tidb-cloud/vector-search-improve-performance.md)
- [Improve Vector Search Performance](/vector-search-improve-performance.md)
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ summary: Learn about functions and operators available for Vector Data Types.

## Vector functions

The following functions are designed specifically for [Vector Data Types](/tidb-cloud/vector-search-data-types.md).
The following functions are designed specifically for [Vector Data Types](/vector-search-data-types.md).

**Vector Distance Functions:**

Expand All @@ -33,7 +33,7 @@ The following functions are designed specifically for [Vector Data Types](/tidb-

## Extended built-in functions and operators

The following built-in functions and operators are extended, supporting operating on [Vector Data Types](/tidb-cloud/vector-search-data-types.md).
The following built-in functions and operators are extended, supporting operating on [Vector Data Types](/vector-search-data-types.md).

**Arithmetic operators:**

Expand All @@ -42,7 +42,7 @@ The following built-in functions and operators are extended, supporting operatin
| [`+`](https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_plus) | Vector element-wise addition operator |
| [`-`](https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_minus) | Vector element-wise subtraction operator |

For more information about how vector arithmetic works, see [Vector Data Type | Arithmetic](/tidb-cloud/vector-search-data-types.md#arithmetic).
For more information about how vector arithmetic works, see [Vector Data Type | Arithmetic](/vector-search-data-types.md#arithmetic).

**Aggregate (GROUP BY) functions:**

Expand Down Expand Up @@ -74,7 +74,7 @@ For more information about how vector arithmetic works, see [Vector Data Type |
| [`!=`, `<>`](https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-equal) | Not equal operator |
| [`NOT IN()`](https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-in) | Check whether a value is not within a set of values |

For more information about how vectors are compared, see [Vector Data Type | Comparison](/tidb-cloud/vector-search-data-types.md#comparison).
For more information about how vectors are compared, see [Vector Data Type | Comparison](/vector-search-data-types.md#comparison).

**Control flow functions:**

Expand All @@ -92,7 +92,7 @@ For more information about how vectors are compared, see [Vector Data Type | Com
| [`CAST()`](https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast) | Cast a value as a certain type |
| [`CONVERT()`](https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_convert) | Cast a value as a certain type |

For more information about how to use `CAST()`, see [Vector Data Type | Cast](/tidb-cloud/vector-search-data-types.md#cast).
For more information about how to use `CAST()`, see [Vector Data Type | Cast](/vector-search-data-types.md#cast).

## Full references

Expand Down Expand Up @@ -279,4 +279,4 @@ The vector functions and the extended usage of built-in functions and operators

## See also

- [Vector Data Types](/tidb-cloud/vector-search-data-types.md)
- [Vector Data Types](/vector-search-data-types.md)
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ summary: Learn how to quickly develop an AI application that performs semantic s

This tutorial demonstrates how to develop a simple AI application that provides **semantic search** features. Unlike traditional keyword search, semantic search intelligently understands the meaning behind your query. For example, if you have documents titled "dog", "fish", and "tree", and you search for "a swimming animal", the application would identify "fish" as the most relevant result.

Throughout this tutorial, you will develop this AI application using [TiDB Vector Search](/tidb-cloud/vector-search-overview.md), Python, [TiDB Vector SDK for Python](https://github.com/pingcap/tidb-vector-python), and AI models.
Throughout this tutorial, you will develop this AI application using [TiDB Vector Search](/vector-search-overview.md), Python, [TiDB Vector SDK for Python](https://github.com/pingcap/tidb-vector-python), and AI models.

> **Note**
>
Expand Down Expand Up @@ -44,7 +44,7 @@ pip install sqlalchemy pymysql sentence-transformers tidb-vector python-dotenv
```

- `tidb-vector`: the Python client for interacting with Vector Search in TiDB Cloud.
- [`sentence-transformers`](https://sbert.net): a Python library that provides pre-trained models for generating [vector embeddings](/tidb-cloud/vector-search-overview.md#vector-embedding) from text.
- [`sentence-transformers`](https://sbert.net): a Python library that provides pre-trained models for generating [vector embeddings](/vector-search-overview.md#vector-embedding) from text.

### Step 3. Configure the connection string to the TiDB cluster

Expand Down Expand Up @@ -79,7 +79,7 @@ pip install sqlalchemy pymysql sentence-transformers tidb-vector python-dotenv

### Step 4. Initialize the embedding model

An [embedding model](/tidb-cloud/vector-search-overview.md#embedding-model) transforms data into [vector embeddings](/tidb-cloud/vector-search-overview.md#vector-embedding). This example uses the pre-trained model [**msmarco-MiniLM-L12-cos-v5**](https://huggingface.co/sentence-transformers/msmarco-MiniLM-L12-cos-v5) for text embedding. This lightweight model, provided by the `sentence-transformers` library, transforms text data into 384-dimensional vector embeddings.
An [embedding model](/vector-search-overview.md#embedding-model) transforms data into [vector embeddings](/vector-search-overview.md#vector-embedding). This example uses the pre-trained model [**msmarco-MiniLM-L12-cos-v5**](https://huggingface.co/sentence-transformers/msmarco-MiniLM-L12-cos-v5) for text embedding. This lightweight model, provided by the `sentence-transformers` library, transforms text data into 384-dimensional vector embeddings.

To set up the model, copy the following code into the `example.py` file. This code initializes a `SentenceTransformer` instance and defines a `text_to_embedding()` function for later use.

Expand Down Expand Up @@ -191,5 +191,5 @@ This demonstration shows how vector search can efficiently locate the most relev

## See also

- [Vector Data Types](/tidb-cloud/vector-search-data-types.md)
- [Vector Data Types](/vector-search-data-types.md)
- [Vector Search Index](/tidb-cloud/vector-search-index.md)
Loading
Loading