-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding checkpoints and evaluation notebook
- Loading branch information
Prachi Garg
authored and
Prachi Garg
committed
Jan 23, 2022
1 parent
d2bd673
commit f92fd99
Showing
8 changed files
with
1,634 additions
and
97 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
import numpy as np | ||
import os | ||
|
||
from PIL import Image | ||
|
||
from torch.utils.data import Dataset | ||
|
||
EXTENSIONS = ['.jpg', '.png'] | ||
|
||
|
||
def load_image(file): | ||
return Image.open(file) | ||
|
||
|
||
def is_image(filename): | ||
return any(filename.endswith(ext) for ext in EXTENSIONS) | ||
|
||
|
||
def is_label_city(filename): | ||
return filename.endswith("_labelTrainIds.png") | ||
|
||
|
||
def is_label_IDD(filename): | ||
return filename.endswith("_labellevel3Ids.png") | ||
|
||
|
||
def is_label_BDD(filename): | ||
return filename.endswith("_train_id.png") | ||
|
||
|
||
def image_path(root, basename, extension): | ||
return os.path.join(root, f'{basename}{extension}') | ||
|
||
|
||
def image_path_city(root, name): | ||
return os.path.join(root, f'{name}') | ||
|
||
|
||
def image_basename(filename): | ||
return os.path.basename(os.path.splitext(filename)[0]) | ||
|
||
|
||
class VOC12(Dataset): | ||
|
||
def __init__(self, root, input_transform=None, target_transform=None): | ||
self.images_root = os.path.join(root, 'images') | ||
self.labels_root = os.path.join(root, 'labels') | ||
|
||
self.filenames = [image_basename(f) | ||
for f in os.listdir(self.labels_root) if is_image(f)] | ||
self.filenames.sort() | ||
|
||
self.input_transform = input_transform | ||
self.target_transform = target_transform | ||
|
||
def __getitem__(self, index): | ||
filename = self.filenames[index] | ||
|
||
with open(image_path(self.images_root, filename, '.jpg'), 'rb') as f: | ||
image = load_image(f).convert('RGB') | ||
with open(image_path(self.labels_root, filename, '.png'), 'rb') as f: | ||
label = load_image(f).convert('P') | ||
|
||
if self.input_transform is not None: | ||
image = self.input_transform(image) | ||
if self.target_transform is not None: | ||
label = self.target_transform(label) | ||
|
||
return image, label | ||
|
||
def __len__(self): | ||
return len(self.filenames) | ||
|
||
|
||
class cityscapes(Dataset): | ||
|
||
def __init__(self, root, input_transform=None, target_transform=None, subset='train'): | ||
self.images_root = os.path.join(root, 'leftImg8bit/') | ||
self.labels_root = os.path.join(root, 'gtFine/') | ||
|
||
self.images_root += subset | ||
self.labels_root += subset | ||
|
||
print(self.images_root) | ||
self.filenames = [os.path.join(dp, f) for dp, dn, fn in os.walk( | ||
os.path.expanduser(self.images_root)) for f in fn if is_image(f)] | ||
self.filenames.sort() | ||
|
||
# [os.path.join(dp, f) for dp, dn, fn in os.walk(os.path.expanduser(".")) for f in fn] | ||
# self.filenamesGt = [image_basename(f) for f in os.listdir(self.labels_root) if is_image(f)] | ||
self.filenamesGt = [os.path.join(dp, f) for dp, dn, fn in os.walk( | ||
os.path.expanduser(self.labels_root)) for f in fn if is_label_city(f)] | ||
self.filenamesGt.sort() | ||
# self.filenames = self.filenames[:1] | ||
# self.filenamesGt = self.filenamesGt[:1] # trying to plot the t-sne | ||
|
||
self.input_transform = input_transform | ||
self.target_transform = target_transform | ||
|
||
def __getitem__(self, index): | ||
filename = self.filenames[index] | ||
filenameGt = self.filenamesGt[index] | ||
|
||
with open(image_path_city(self.images_root, filename), 'rb') as f: | ||
image = load_image(f).convert('RGB') | ||
with open(image_path_city(self.labels_root, filenameGt), 'rb') as f: | ||
label = load_image(f).convert('P') | ||
|
||
if self.input_transform is not None: | ||
image = self.input_transform(image) | ||
if self.target_transform is not None: | ||
label = self.target_transform(label) | ||
|
||
return image, label, filename, filenameGt | ||
|
||
def __len__(self): | ||
return len(self.filenames) | ||
|
||
# added | ||
|
||
|
||
class IDD(Dataset): | ||
|
||
def __init__(self, root, input_transform=None, target_transform=None, subset='train'): | ||
self.images_root = os.path.join(root, 'leftImg8bit/') | ||
self.labels_root = os.path.join(root, 'gtFine/') | ||
|
||
self.images_root += subset | ||
self.labels_root += subset | ||
|
||
print(self.images_root) | ||
self.filenames = [os.path.join(dp, f) for dp, dn, fn in os.walk( | ||
os.path.expanduser(self.images_root)) for f in fn if is_image(f)] | ||
self.filenames.sort() | ||
|
||
self.filenamesGt = [os.path.join(dp, f) for dp, dn, fn in os.walk( | ||
os.path.expanduser(self.labels_root)) for f in fn if is_label_IDD(f)] | ||
self.filenamesGt.sort() | ||
|
||
# self.filenames = self.filenames[:20] | ||
# self.filenamesGt = self.filenamesGt[:20] | ||
|
||
self.input_transform = input_transform | ||
self.target_transform = target_transform | ||
|
||
def __getitem__(self, index): | ||
filename = self.filenames[index] | ||
filenameGt = self.filenamesGt[index] | ||
|
||
# image_path_city will work for IDD also as the images already have a .png extension | ||
with open(image_path_city(self.images_root, filename), 'rb') as f: | ||
image = load_image(f).convert('RGB') | ||
with open(image_path_city(self.labels_root, filenameGt), 'rb') as f: | ||
label = load_image(f).convert('P') | ||
|
||
if self.input_transform is not None: | ||
image = self.input_transform(image) | ||
if self.target_transform is not None: | ||
label = self.target_transform(label) | ||
|
||
return image, label, filename, filenameGt | ||
|
||
def __len__(self): | ||
return len(self.filenames) | ||
|
||
|
||
class BDD(Dataset): | ||
|
||
def __init__(self, root, input_transform=None, target_transform=None, subset='train'): | ||
self.images_root = os.path.join(root, 'images/') | ||
self.labels_root = os.path.join(root, 'labels/') | ||
|
||
self.images_root += subset | ||
self.labels_root += subset | ||
|
||
print(self.images_root) | ||
# self.filenames = [image_basename(f) for f in os.listdir(self.images_root) if is_image(f)] | ||
self.filenames = [f for f in os.listdir(self.images_root) if is_image(f)] | ||
self.filenames.sort() | ||
|
||
# [os.path.join(dp, f) for dp, dn, fn in os.walk(os.path.expanduser(".")) for f in fn] | ||
# self.filenamesGt = [image_basename(f) for f in os.listdir(self.labels_root) if is_image(f)] | ||
self.filenamesGt = [fn for fn in os.listdir(self.labels_root) if is_label_BDD(fn)] | ||
self.filenamesGt.sort() | ||
|
||
# self.filenames = self.filenames[:20] | ||
# self.filenamesGt = self.filenamesGt[:20] | ||
|
||
self.input_transform = input_transform | ||
self.target_transform = target_transform | ||
|
||
def __getitem__(self, index): | ||
filename = self.filenames[index] | ||
filenameGt = self.filenamesGt[index] | ||
|
||
with open(image_path_city(self.images_root, filename), 'rb') as f: | ||
image = load_image(f).convert('RGB') | ||
with open(image_path_city(self.labels_root, filenameGt), 'rb') as f: | ||
label = load_image(f).convert('P') | ||
|
||
if self.input_transform is not None: | ||
image = self.input_transform(image) | ||
if self.target_transform is not None: | ||
label = self.target_transform(label) | ||
|
||
return image, label, filename, filenameGt | ||
|
||
def __len__(self): | ||
return len(self.filenames) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters