- ImageNet-1k pre-trained weights available in torchvision or github (WaveMix)
- Number of parameters less than 30 M
- Only model with highest ImageNet performance from one architecture family
Architecture | # Params (M) | ImageNet-1k Top-1 Accuracy (%) |
---|---|---|
ResNet-50 | 25.6 | 76.13 |
WaveMix | 27.9 | 75.32 |
ConvNeXt-Tiny | 28.6 | 82.52 |
Swin-Tiny | 28.3 | 81.47 |
SwinV2-Tiny | 28.4 | 82.07 |
EfficientNetV2-S | 21.5 | 84.23 |
DenseNet-161 | 28.7 | 77.14 |
MobileNetV3-Large | 5.5 | 75.27 |
RegNetY-3.2GF | 19.4 | 81.98 |
ResNeXt-50 32×4d | 25.0 | 81.20 |
ShuffleNetV2 2.0× | 7.4 | 76.23 |
Dataset | Domain | # Training Images | # Testing Images | # Classes |
---|---|---|---|---|
CIFAR-10 | 🖼️ Natural Images | 50,000 | 10,000 | 10 |
CIFAR-100 | 🖼️ Natural Images | 50,000 | 10,000 | 100 |
TinyImageNet | 🖼️ Natural Images (ImageNet subset) | 100,000 | 10,000 | 200 |
Stanford Dogs | 🖼️ Natural Images (Dog breeds) | 12,000 | 8,580 | 120 |
Flowers-102 | 🖼️ Natural Images (Flower species) | 2,040 | 6,149 | 102 |
CUB-200-2011 | 🖼️ Natural Images (Bird species) | 5,994 | 5,794 | 200 |
Stanford Cars | 🖼️ Natural Images (Car models) | 8,144 | 8,041 | 196 |
Food-101 | 🖼️ Natural Images (Food categories) | 75,750 | 25,250 | 101 |
DTD | 🎨 Texture Images | 1,880 | 1,880 | 47 |
UCMerced Land Use | 🛰️ Remote Sensing Images | 1,680 | 420 | 21 |
EuroSAT | 🛰️ Remote Sensing Images | 18,900 | 8,100 | 10 |
PlantVillage | 🌿 Plant Images | 44,343 | 11,105 | 39 |
PlantCLEF | 🌿 Plant Images | 10,455 | 1,135 | 20 |
Galaxy10 DECals | 🌌 Astronomy Images (Galaxy Morphology) | 15,962 | 1,774 | 10 |
BreakHis 40× | 🏥 Medical Images (Histopathology) | 1,398 | 606 | 2 |
BreakHis 100× | 🏥 Medical Images (Histopathology) | 1,458 | 632 | 2 |
BreakHis 200× | 🏥 Medical Images (Histopathology) | 1,411 | 611 | 2 |
BreakHis 400× | 🏥 Medical Images (Histopathology) | 1,276 | 553 | 2 |
RSNA Pneumonia Detection | 🏥 Medical Images (Radiology) | 24,181 | 6046 | 2 |
python <dataset.py> -model <backbone> -bs <batch-size>
If you want to create a train test split
python split.py --input_dir <input folder path> --output_dir <output folder path> --test_size <fraction to be split>
@misc{jeevan2024backbone,
title={Which Backbone to Use: A Resource-efficient Domain Specific Comparison for Computer Vision},
author={Pranav Jeevan and Amit Sethi},
year={2024},
eprint={2406.05612},
archivePrefix={arXiv},
primaryClass={cs.CV}
}