Public sEMG dataset [1] for research, realized in a collaboration between
- Energy-Efficient Embedded Systems (EEES) Laboratory (IT) of University of Bologna - Prof. Luca Benini
- INAIL Prosthesis Centre in Vigorso di Budrio (EN|IT) (Bologna) - contact Prof. Emanuele Gruppioni
The UniBo-INAIL dataset has a nested structure:
-
$7$ subjects (healthy males aged$29.5 \pm 12.2$ years)-
$8$ sessions per subject, on different acquisition days-
$4$ arm postures per session: proximal (the sole with the arm not fully extended; the most common in literature), distal, distal with palm down, distal with arm$45°$ up.
-
-
The sessions are rest
, power grip
, 2-finger pinch grip
, 3-finger pinch grip
, pointing index
, and open hand
.
Each movement is repeated
The sEMG acquired via
Other works and documentation on the UniBo-INAIL dataset:
- first paper on the dataset, by B. Milosevic et al. [2];
- M.Sc. thesis based on the dataset, by M. Zanghieri [3];
- papers with earlier versions of the UniBo-INAIL acquisition setup and protocol, by S. Benatti et al. [4], [5].
The data/
folder contains a .mat
file for each subject, day and arm posture.
The scripts/
folder provides Python and MATLAB functions for loading the data.
If you use this dataset, please cite our paper [1]:
@INPROCEEDINGS{zanghieri2023online,
author={Zanghieri, Marcello and Orlandi, Mattia and Donati, Elisa and Gruppioni, Emanuele and Benini, Luca and Benatti, Simone},
booktitle={2023 IEEE Biomedical Circuits and Systems Conference (BioCAS)},
title={Online Unsupervised Arm Posture Adaptation for {sEMG}-based Gesture Recognition on a Parallel Ultra-Low-Power Microcontroller},
year={2023},
volume={},
number={},
pages={1-5},
doi={10.1109/BioCAS58349.2023.10388902}}
[1] M. Zanghieri, M. Orlandi, E. Donati, E. Gruppioni, L. Benini, S. Benatti, “Online unsupervised arm posture adaptation for sEMG-based gesture recognition on a parallel ultra-low-power microcontroller,” in 2023 IEEE International Conference on Biomedical Circuits and Systems (BioCAS), 2023, pp. 1-5. DOI: 10.1109/BioCAS58349.2023.10388902.
[2] B. Milosevic, E. Farella, S. Benatti, “Exploring arm posture and temporal variability in myoelectric hand gesture recognition,” in 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2018, pp. 1032–1037. DOI: 10.1109/BIOROB.2018.8487838.
[3] M. Zanghieri, “sEMG-based hand gesture recognition with deep learning,” M.Sc. thesis, University of Bologna, Bologna, Italy, 2019. DOI: 10.48550/arXiv.2306.10954.
[4] S. Benatti, B. Milosevic, E. Farella, E. Gruppioni, L. Benini, “A prosthetic hand body area controller based on efficient pattern recognition control strategies,” in Sensors, vol. 17, no. 4, art. num. 869, 2017. DOI: 10.3390/s17040869.
[5] S. Benatti, E. Farella, E. Gruppioni, L. Benini, “Analysis of robust implementation of an EMG pattern recognition based control,” in Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4 2014, pp. 45–54. DOI: 10.5220/0004800300450054.
All files are released under the LGPL-2.1 license (LGPL-2.1
) (see LICENSE
).