Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve examples #18

Merged
merged 6 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 4 additions & 5 deletions Makefile
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
.DEFAULT_GOAL := all
sources = pydantic_ai tests

.PHONY: .uv # Check that uv is installed
.uv:
Expand All @@ -16,13 +15,13 @@ install: .uv .pre-commit

.PHONY: format # Format the code
format:
uv run ruff format $(sources)
uv run ruff check --fix --fix-only $(sources)
uv run ruff format
uv run ruff check --fix --fix-only

.PHONY: lint # Lint the code
lint:
uv run ruff format --check $(sources)
uv run ruff check $(sources)
uv run ruff format --check
uv run ruff check

.PHONY: typecheck-pyright
typecheck-pyright:
Expand Down
73 changes: 73 additions & 0 deletions examples/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Pydantic AI Examples

Examples of how to use Pydantic AI and what it can do.

## Usage

To run the examples, run:

```bash
uv run -m examples.<example_module_name>
```

## Examples

### `pydantic_model.py`

(Demonstrates: custom `result_type`)

Simple example of using Pydantic AI to construct a Pydantic model from a text input.

```bash
uv run --extra examples -m examples.pydantic_model
```

This examples uses `openai:gpt-4o` by default but it works well with other models, e.g. you can run it
with Gemini using:

```bash
PYDANTIC_AI_MODEL=gemini-1.5-pro uv run --extra examples -m examples.pydantic_model
```

(or `PYDANTIC_AI_MODEL=gemini-1.5-flash...`)

### `sql_gen.py`

(Demonstrates: custom `result_type`, dynamic system prompt, result validation, agent deps)

Example demonstrating how to use Pydantic AI to generate SQL queries based on user input.
hyperlint-ai[bot] marked this conversation as resolved.
Show resolved Hide resolved
hyperlint-ai[bot] marked this conversation as resolved.
Show resolved Hide resolved

```bash
uv run --extra examples -m examples.sql_gen
```

or to use a custom prompt:

```bash
uv run --extra examples -m examples.sql_gen "find me whatever"
```

This model uses `gemini-1.5-flash` by default since Gemini is good at single shot queries.

### `weather.py`

(Demonstrates: retrievers, multiple retrievers, agent deps)
samuelcolvin marked this conversation as resolved.
Show resolved Hide resolved

Example of Pydantic AI with multiple tools which the LLM needs to call in turn to answer a question.
hyperlint-ai[bot] marked this conversation as resolved.
Show resolved Hide resolved

In this case the idea is a "weather" agent — the user can ask for the weather in multiple cities,
the agent will use the `get_lat_lng` tool to get the latitude and longitude of the locations, then use
the `get_weather` tool to get the weather.

To run this example properly, you'll need two extra API keys:
* A weather API key from [tomorrow.io](https://www.tomorrow.io/weather-api/) set via `WEATHER_API_KEY`
* A geocoding API key from [geocode.maps.co](https://geocode.maps.co/) set via `GEO_API_KEY`

**(Note if either key is missing, the code will fall back to dummy data.)**

```bash
uv run --extra examples -m examples.weather
```

This example uses `openai:gpt-4o` by default. Gemini seems to be unable to handle the multiple tool
calls.
15 changes: 0 additions & 15 deletions examples/parse_model.py

This file was deleted.

31 changes: 31 additions & 0 deletions examples/pydantic_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
"""Simple example of using Pydantic AI to construct a Pydantic model from a text input.

Run with:

uv run --extra examples -m examples.pydantic_model
"""

import os
from typing import cast

import logfire
from pydantic import BaseModel

from pydantic_ai import Agent
from pydantic_ai.agent import KnownModelName

# 'if-token-present' means nothing will be sent (and the example wil work) if you don't have logfire set up
logfire.configure(send_to_logfire='if-token-present')


class MyModel(BaseModel):
city: str
country: str


model = cast(KnownModelName, os.getenv('PYDANTIC_AI_MODEL', 'openai:gpt-4o'))
agent = Agent(model, result_type=MyModel, deps=None)

if __name__ == '__main__':
result = agent.run_sync('The windy city in the US of A.')
print(result.response)
137 changes: 108 additions & 29 deletions examples/sql_gen.py
Original file line number Diff line number Diff line change
@@ -1,45 +1,80 @@
"""Example demonstrating how to use Pydantic AI to generate SQL queries based on user input.

Run with:

uv run --extra examples -m examples.sql_gen
"""

import asyncio
import os
import sys
from collections.abc import AsyncGenerator
from contextlib import asynccontextmanager
from dataclasses import dataclass
from datetime import date
from typing import Annotated, Any, cast

from pydantic_ai import Agent
import asyncpg
import logfire
from annotated_types import MinLen
from devtools import debug

system_prompt = """\
Given the following PostgreSQL table of records, your job is to write a SQL query that suits the user's request.
from pydantic_ai import Agent, CallContext, ModelRetry
from pydantic_ai.agent import KnownModelName

# 'if-token-present' means nothing will be sent (and the example wil work) if you don't have logfire set up
logfire.configure()

CREATE TABLE records AS (
start_timestamp timestamp with time zone,
created_at timestamp with time zone,
DB_SCHEMA = """
CREATE TABLE IF NOT EXISTS records (
created_at timestamptz,
start_timestamp timestamptz,
end_timestamp timestamptz,
trace_id text,
span_id text,
parent_span_id text,
kind span_kind,
end_timestamp timestamp with time zone,
level smallint,
level log_level,
span_name text,
message text,
attributes_json_schema text,
attributes jsonb,
tags text[],
otel_links jsonb,
otel_events jsonb,
is_exception boolean,
otel_status_code status_code,
otel_status_message text,
otel_scope_name text,
otel_scope_version text,
otel_scope_attributes jsonb,
service_namespace text,
service_name text,
service_version text,
service_instance_id text,
process_pid integer
service_name text
);
"""


@dataclass
class Response:
sql_query: Annotated[str, MinLen(1)]


@dataclass
class Deps:
conn: asyncpg.Connection


today's date = 2024-10-09
model = cast(KnownModelName, os.getenv('PYDANTIC_AI_MODEL', 'gemini-1.5-flash'))
agent: Agent[Deps, Response] = Agent(model, result_type=Response)


@agent.system_prompt
async def system_prompt() -> str:
return f"""\
Given the following PostgreSQL table of records, your job is to write a SQL query that suits the user's request.

{DB_SCHEMA}

today's date = {date.today()}

Example
request: show me records where foobar is false
response: SELECT * FROM records WHERE attributes->>'foobar' = false'
response: SELECT * FROM records WHERE attributes->>'foobar' = false
Example
request: show me records where attributes include the key "foobar"
response: SELECT * FROM records WHERE attributes ? 'foobar'
Example
request: show me records from yesterday
response: SELECT * FROM records WHERE start_timestamp::date > CURRENT_TIMESTAMP - INTERVAL '1 day'
Expand All @@ -49,15 +84,59 @@
"""


@dataclass
class Response:
sql_query: str
@agent.result_validator
async def validate_result(ctx: CallContext[Deps], result: Response) -> Response:
result.sql_query = result.sql_query.replace('\\', '')
lower_query = result.sql_query.lower()
if not lower_query.startswith('select'):
raise ModelRetry('Please a SELECT query')

try:
await ctx.deps.conn.execute(f'EXPLAIN {result.sql_query}')
except asyncpg.exceptions.PostgresError as e:
raise ModelRetry(f'Invalid query: {e}') from e
else:
return result

agent = Agent('gemini-1.5-flash', result_type=Response, system_prompt=system_prompt, deps=None)

async def main():
if len(sys.argv) == 1:
prompt = 'show me logs from yesterday, with level "error"'
else:
prompt = sys.argv[1]

if __name__ == '__main__':
with debug.timer('SQL Generation'):
result = agent.run_sync('show me logs from yesterday, with level "error"')
async with database_connect('postgresql://postgres@localhost', 'pydantic_ai_sql_gen') as conn:
deps = Deps(conn)
result = await agent.run(prompt, deps=deps)
debug(result.response.sql_query)


# pyright: reportUnknownMemberType=false
# pyright: reportUnknownVariableType=false
@asynccontextmanager
async def database_connect(server_dsn: str, database: str) -> AsyncGenerator[Any, None]:
with logfire.span('check and create DB'):
conn = await asyncpg.connect(server_dsn)
try:
db_exists = await conn.fetchval('SELECT 1 FROM pg_database WHERE datname = $1', database)
if not db_exists:
await conn.execute(f'CREATE DATABASE {database}')
finally:
await conn.close()

conn = await asyncpg.connect(f'{server_dsn}/{database}')
try:
with logfire.span('create schema'):
async with conn.transaction():
if not db_exists:
await conn.execute(
"CREATE TYPE log_level AS ENUM ('debug', 'info', 'warning', 'error', 'critical')"
)
await conn.execute(DB_SCHEMA)
yield conn
finally:
await conn.close()


if __name__ == '__main__':
asyncio.run(main())
Loading
Loading