Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sample from distribution without storing #1790

Merged
merged 6 commits into from
May 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 36 additions & 14 deletions numpyro/infer/mcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,11 +188,23 @@ def _sample_fn_nojit_args(state, sampler, args, kwargs):
return (sampler.sample(state[0], args, kwargs),)


def _collect_fn(collect_fields):
@cached_by(_collect_fn, collect_fields)
def _collect_fn(collect_fields, remove_sites):
@cached_by(_collect_fn, collect_fields, remove_sites)
def collect(x):
if collect_fields:
return attrgetter(*collect_fields)(x[0])
fields = attrgetter(*collect_fields)(x[0])

if remove_sites != ():
fields = [fields] if len(collect_fields) == 1 else list(fields)
assert isinstance(fields[0], dict)

sample_sites = fields[0].copy()
for site in remove_sites:
sample_sites.pop(site)
fields[0] = sample_sites
fields = fields[0] if len(collect_fields) == 1 else fields

return fields
else:
return x[0]

Expand Down Expand Up @@ -419,7 +431,7 @@ def _get_cached_init_state(self, rng_key, args, kwargs):
except TypeError:
return None

def _single_chain_mcmc(self, init, args, kwargs, collect_fields):
def _single_chain_mcmc(self, init, args, kwargs, collect_fields, remove_sites):
rng_key, init_state, init_params = init
# Check if _sample_fn is None, then we need to initialize the sampler.
if init_state is None or (getattr(self.sampler, "_sample_fn", None) is None):
Expand Down Expand Up @@ -452,7 +464,7 @@ def _single_chain_mcmc(self, init, args, kwargs, collect_fields):
upper_idx,
sample_fn,
init_val,
transform=_collect_fn(collect_fields),
transform=_collect_fn(collect_fields, remove_sites),
progbar=self.progress_bar,
return_last_val=True,
thinning=self.thinning,
Expand Down Expand Up @@ -556,7 +568,8 @@ def warmup(
These are typically the arguments needed by the `model`.
:param extra_fields: Extra fields (aside from :meth:`~numpyro.infer.mcmc.MCMCKernel.default_fields`)
from the state object (e.g. :data:`numpyro.infer.hmc.HMCState` for HMC) to collect during
the MCMC run.
the MCMC run. Exclude sample sites from collection with "~`sampler.sample_field`.`sample_site`".
e.g. "~z.a" will prevent site "a" from being collected if you're using the NUTS sampler.
:type extra_fields: tuple or list
:param bool collect_warmup: Whether to collect samples from the warmup phase. Defaults
to `False`.
Expand Down Expand Up @@ -591,7 +604,9 @@ def run(self, rng_key, *args, extra_fields=(), init_params=None, **kwargs):
:param extra_fields: Extra fields (aside from `"z"`, `"diverging"`) from the
state object (e.g. :data:`numpyro.infer.hmc.HMCState` for HMC) to be collected
during the MCMC run. Note that subfields can be accessed using dots, e.g.
`"adapt_state.step_size"` can be used to collect step sizes at each step.
`"adapt_state.step_size"` can be used to collect step sizes at each step. Exclude sample sites from
collection with "~`sampler.sample_field`.`sample_site`". e.g. "~z.a" will prevent site "a" from
being collected if you're using the NUTS sampler.
:type extra_fields: tuple or list of str
:param init_params: Initial parameters to begin sampling. The type must be consistent
with the input type to `potential_fn` provided to the kernel. If the kernel is
Expand Down Expand Up @@ -626,18 +641,25 @@ def run(self, rng_key, *args, extra_fields=(), init_params=None, **kwargs):
" as `num_chains`."
)
assert isinstance(extra_fields, (tuple, list))
collect_fields = tuple(
set(
(self._sample_field,)
+ tuple(self._default_fields)
+ tuple(extra_fields)
)
)

collect_fields = {}
remove_sites = {}
for field_name in (
(self._sample_field,) + tuple(self._default_fields) + tuple(extra_fields)
):
if field_name.startswith(f"~{self._sample_field}."):
remove_sites[(field_name[len(self._sample_field) + 2 :])] = None
else:
collect_fields[field_name] = None
collect_fields = tuple(collect_fields.keys())
remove_sites = tuple(remove_sites.keys())

partial_map_fn = partial(
self._single_chain_mcmc,
args=args,
kwargs=kwargs,
collect_fields=collect_fields,
remove_sites=remove_sites,
)
map_args = (rng_key, init_state, init_params)
if self.num_chains == 1:
Expand Down
14 changes: 14 additions & 0 deletions test/infer/test_mcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -1186,3 +1186,17 @@ def model(data):
mcmc.run(rng_key, data, extra_fields=("num_steps",))
num_steps_list = np.array(mcmc.get_extra_fields()["num_steps"])
assert all(step == num_steps for step in num_steps_list)


@pytest.mark.parametrize("kernel_cls", [NUTS, BarkerMH])
@pytest.mark.parametrize("remove_sites", [("~z.a", "~z.b"), ("~z.a", "~z.a")])
def test_remove_sites(kernel_cls, remove_sites):
def model():
numpyro.sample("a", dist.Normal())
numpyro.sample("b", dist.Normal())

mcmc = MCMC(kernel_cls(model), num_warmup=10, num_samples=10)
mcmc.run(random.PRNGKey(0), extra_fields=remove_sites)
amifalk marked this conversation as resolved.
Show resolved Hide resolved
samps = mcmc.get_samples()

assert all([site[3:] not in samps for site in remove_sites])
Loading