Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add further entropy implementations. #1800

Merged
merged 3 commits into from
May 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions numpyro/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -703,6 +703,14 @@ def variance(self):
def cdf(self, x):
return 1 - self.base_dist.cdf(1 / x)

def entropy(self):
return (
self.concentration
+ jnp.log(self.rate)
+ gammaln(self.concentration)
- (1 + self.concentration) * digamma(self.concentration)
)


class Gompertz(Distribution):
r"""Gompertz Distribution.
Expand Down
4 changes: 2 additions & 2 deletions numpyro/distributions/directional.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,8 +235,8 @@ def __repr__(self):
"{}: {}".format(
p,
getattr(self, p)
if getattr(self, p).numel() == 1
else getattr(self, p).size(),
if getattr(self, p).size == 1
else getattr(self, p).size,
)
for p in self.arg_constraints.keys()
]
Expand Down
10 changes: 10 additions & 0 deletions numpyro/distributions/distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -686,6 +686,9 @@ def variance(self):
self.base_dist.variance, self.batch_shape + self.event_shape
)

def entropy(self):
return jnp.broadcast_to(self.base_dist.entropy(), self.batch_shape)


class ImproperUniform(Distribution):
"""
Expand Down Expand Up @@ -851,6 +854,10 @@ def expand(self, batch_shape):
self.reinterpreted_batch_ndims
)

def entropy(self):
axes = range(-self.reinterpreted_batch_ndims, 0)
return self.base_dist.entropy().sum(axes)


class MaskedDistribution(Distribution):
"""
Expand Down Expand Up @@ -1168,6 +1175,9 @@ def mean(self):
def variance(self):
return jnp.zeros(self.batch_shape + self.event_shape)

def entropy(self):
return -jnp.broadcast_to(self.log_density, self.batch_shape)


class Unit(Distribution):
"""
Expand Down
15 changes: 12 additions & 3 deletions test/test_distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -1041,6 +1041,15 @@ def get_sp_dist(jax_dist):
),
]

BASE = [
T(lambda *args: dist.Normal(*args).to_event(2), np.arange(24).reshape(3, 4, 2)),
T(lambda *args: dist.Normal(*args).expand((3, 4, 7)), np.arange(7)),
T(
lambda *args: dist.Normal(*args).to_event(2).expand((7, 3)),
np.arange(24).reshape(3, 4, 2),
),
]


def _is_batched_multivariate(jax_dist):
return len(jax_dist.event_shape) > 0 and len(jax_dist.batch_shape) > 0
Expand Down Expand Up @@ -1494,7 +1503,7 @@ def test_entropy_scipy(jax_dist, sp_dist, params):
try:
actual = jax_dist.entropy()
except NotImplementedError:
pytest.skip(reason="distribution does not implement `entropy`")
pytest.skip(reason=f"distribution {jax_dist} does not implement `entropy`")
if _is_batched_multivariate(jax_dist):
pytest.skip("batching not allowed in multivariate distns.")
if sp_dist is None:
Expand All @@ -1506,15 +1515,15 @@ def test_entropy_scipy(jax_dist, sp_dist, params):


@pytest.mark.parametrize(
"jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL
"jax_dist, sp_dist, params", CONTINUOUS + DISCRETE + DIRECTIONAL + BASE
)
def test_entropy_samples(jax_dist, sp_dist, params):
jax_dist = jax_dist(*params)

try:
actual = jax_dist.entropy()
except NotImplementedError:
pytest.skip(reason="distribution does not implement `entropy`")
pytest.skip(reason=f"distribution {jax_dist} does not implement `entropy`")

samples = jax_dist.sample(jax.random.key(8), (1000,))
neg_log_probs = -jax_dist.log_prob(samples)
Expand Down
Loading