Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support multidimensional HSGP (numpyro.contrib.hsgp) #1803

Merged
merged 8 commits into from
May 28, 2024
57 changes: 32 additions & 25 deletions docs/source/contrib.rst
Original file line number Diff line number Diff line change
Expand Up @@ -106,8 +106,7 @@ This module contains helper functions for use in the Hilbert Space Gaussian Proc
described in [1] and [2].

.. warning::
This module is experimental. Currently, it only supports Gaussian processes with one-dimensional inputs.

This module is experimental.

**Why do we need an approximation?**

Expand All @@ -123,30 +122,34 @@ a practical approach using NumPyro and PyMC.

Here we provide the main steps and ingredients of the approximation method:

1. Each stationary kernel :math:`k` has an associated spectral density :math:`S(\omega)`. There are closed formulas for the most common kernels. These formulas depend on the hyperparameters of the kernel (e.g. amplitudes and length scales).
2. We can approximate the spectral density :math:`S(\omega)` as a polynomial series in :math:`||\omega||`. We call :math:`\omega` the frequency.
3. We can interpret these polynomial terms as "powers" of the Laplacian operator. The key observation is that the Fourier transform of the Laplacian operator is :math:`||\omega||^2`.
4. Next, we impose Dirichlet boundary conditions on the Laplacian operator which makes it self-adjoint and with discrete spectrum.
5. We identify the expansion in (2) with the sum of powers of the Laplacian operator in the eigenbasis of (4).
1. Each stationary kernel :math:`k` has an associated spectral density :math:`S(\omega)`. There are closed formulas for the most common kernels. These formulas depend on the hyperparameters of the kernel (e.g. amplitudes and length scales).

2. We can approximate the spectral density :math:`S(\omega)` as a polynomial series in :math:`||\omega||`. We call :math:`\omega` the frequency.

3. We can interpret these polynomial terms as "powers" of the Laplacian operator. The key observation is that the Fourier transform of the Laplacian operator is :math:`||\omega||^2`.

4. Next, we impose Dirichlet boundary conditions on the Laplacian operator which makes it self-adjoint and with discrete spectrum.

5. We identify the expansion in (2) with the sum of powers of the Laplacian operator in the eigenbasis of (4).

For the one dimensional case the approximation formula, in the non-centered parameterization, is:
Let :math:`m^\star = \prod_{d=1}^D m_d` be the total number of terms of the approximation, where :math:`m_d` is the number of basis functions used in the approximation for the :math:`d`-th dimension. Then, the approximation formula, in the non-centered parameterization, is:

.. math::

f(x) \approx \sum_{j = 1}^{m}
\overbrace{\color{red}{\left(S(\sqrt{\lambda_j})\right)^{1/2}}}^{\text{all hyperparameters are here!}}
f(x) \approx \sum_{j = 1}^{m^\star}
\overbrace{\color{red}{\left(S(\sqrt{\boldsymbol{\lambda}_j})\right)^{1/2}}}^{\text{all hyperparameters are here!}}
\times
\underbrace{\color{blue}{\phi_{j}(x)}}_{\text{easy to compute!}}
\underbrace{\color{blue}{\phi_{j}(\boldsymbol{x})}}_{\text{easy to compute!}}
\times
\overbrace{\color{green}{\beta_{j}}}^{\sim \: \text{Normal}(0,1)}

where :math:`\lambda_j` are the eigenvalues of the Laplacian operator, :math:`\phi_{j}(x)` are the eigenfunctions of the
where :math:`\boldsymbol{x}` is a :math:`D` vector of inputs, :math:`\boldsymbol{\lambda}_j^\star` are the eigenvalues of the Laplacian operator, :math:`\phi_{j}(\boldsymbol{x})` are the eigenfunctions of the
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you define or explain what \boldsymbol{\lambda}_j^\ is :)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good catch, thanks :)

Laplacian operator, and :math:`\beta_{j}` are the coefficients of the expansion (see Eq. (8) in [2]). We expect this
to be a good approximation for a finite number of :math:`m` terms in the series as long as the inputs values :math:`x`
are not too close to the boundaries `ell` amd `-ell`.
to be a good approximation for a finite number of :math:`m^\star` terms in the series as long as the inputs values :math:`x`
are not too close to the boundaries :math:`-L_d` and :math:`L_d`.

.. note::
Even though the periodic kernel is not stationary, one can still adapt and find a similar approximation formula.
Even though the periodic kernel is not stationary, one can still adapt and find a similar approximation formula. However, these kernels are not supported for multidimensional inputs.
See Appendix B in [2] for more details.

**Example:**
Expand Down Expand Up @@ -240,22 +243,26 @@ Other kernels can be used similarly.

**References:**

1. Solin, A., Särkkä, S. Hilbert space methods for reduced-rank Gaussian process regression.
Stat Comput 30, 419-446 (2020).
1. Solin, A., Särkkä, S. Hilbert space methods for reduced-rank Gaussian process regression.
Stat Comput 30, 419-446 (2020).

2. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).

3. `Orduz, J., A Conceptual and Practical Introduction to Hilbert Space GPs Approximation Methods <https://juanitorduz.github.io/hsgp_intro>`_.

4. `Example: Hilbert space approximation for Gaussian processes <https://num.pyro.ai/en/stable/examples/hsgp.html>`_.

5. `Gelman, Vehtari, Simpson, et al., Bayesian workflow book - Birthdays <https://avehtari.github.io/casestudies/Birthdays/birthdays.html>`_.
2. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).
3. `Orduz, J., A Conceptual and Practical Introduction to Hilbert Space GPs Approximation Methods <https://juanitorduz.github.io/hsgp_intro>`_.
4. `Example: Hilbert space approximation for Gaussian processes <https://num.pyro.ai/en/stable/examples/hsgp.html>`_.
5. `Gelman, Vehtari, Simpson, et al., Bayesian workflow book - Birthdays <https://avehtari.github.io/casestudies/Birthdays/birthdays.html>`_.

.. note::
The code of this module is based on the code of the example
`Example: Hilbert space approximation for Gaussian processes <https://num.pyro.ai/en/stable/examples/hsgp.html>`_ by `Omar Sosa Rodríguez <https://github.com/omarfsosa>`_.

eigenindices
----------------
.. autofunction:: numpyro.contrib.hsgp.laplacian.eigenindices

sqrt_eigenvalues
----------------
.. autofunction:: numpyro.contrib.hsgp.laplacian.sqrt_eigenvalues
Expand Down
2 changes: 1 addition & 1 deletion examples/stochastic_volatility.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def main(args):

ax.plot(dates, jnp.exp(hmc_states["s"].T), "r", alpha=0.01)
legend = ax.legend(["returns", "volatility"], loc="upper right")
legend.legendHandles[1].set_alpha(0.6)
legend.legend_handles[1].set_alpha(0.6)
ax.set(xlabel="time", ylabel="returns", title="Volatility of S&P500 over time")

plt.savefig("stochastic_volatility_plot.pdf")
Expand Down
493 changes: 262 additions & 231 deletions notebooks/source/hsgp_example.ipynb

Large diffs are not rendered by default.

73 changes: 45 additions & 28 deletions numpyro/contrib/hsgp/approximation.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
This module contains the low-rank approximation functions of the Hilbert space Gaussian process.
"""

from __future__ import annotations

from jaxlib.xla_extension import ArrayImpl

import jax.numpy as jnp
Expand Down Expand Up @@ -34,21 +36,22 @@ def _centered_approximation(phi: ArrayImpl, spd: ArrayImpl, m: int) -> ArrayImpl


def linear_approximation(
phi: ArrayImpl, spd: ArrayImpl, m: int, non_centered: bool = True
phi: ArrayImpl, spd: ArrayImpl, m: int | list[int], non_centered: bool = True
) -> ArrayImpl:
"""
Linear approximation formula of the Hilbert space Gaussian process.

See Eq. (8) in [1].

**References:**
1. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).

1. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).

:param ArrayImpl phi: laplacian eigenfunctions
:param ArrayImpl spd: square root of the diagonal of the spectral density evaluated at square
root of the first `m` eigenvalues.
:param int m: number of eigenfunctions in the approximation
:param int | list[int] m: number of eigenfunctions in the approximation
:param bool non_centered: whether to use a non-centered parameterization
:return: The low-rank approximation linear model
:rtype: ArrayImpl
Expand All @@ -62,8 +65,8 @@ def hsgp_squared_exponential(
x: ArrayImpl,
alpha: float,
length: float,
ell: float,
m: int,
ell: float | int | list[float | int],
m: int | list[int],
non_centered: bool = True,
) -> ArrayImpl:
"""
Expand All @@ -75,38 +78,44 @@ def hsgp_squared_exponential(

**References:**

1. Solin, A., Särkkä, S. Hilbert space methods for reduced-rank Gaussian process regression.
Stat Comput 30, 419-446 (2020).
1. Solin, A., Särkkä, S. Hilbert space methods for reduced-rank Gaussian process regression.
Stat Comput 30, 419-446 (2020).

2. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).
2. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).

:param ArrayImpl x: input data
:param float alpha: amplitude of the squared exponential kernel
:param float length: length scale of the squared exponential kernel
:param float ell: positive value that parametrizes the length of the one-dimensional box so that the input data
lies in the interval [-ell, ell]. We expect the approximation to be valid within this interval
:param int m: number of eigenvalues to compute and include in the approximation
:param float | int | list[float | int] ell: positive value that parametrizes the length of the D-dimensional box so
that the input data lies in the interval :math:`[-L_1, L_1] \\times ... \\times [-L_D, L_E]`.
We expect the approximation to be valid within this interval
:param int | list[m] m: number of eigenvalues to compute and include in the approximation for each dimension
(:math:`\\left\\{1, ..., D\\right\\}`).
If an integer, the same number of eigenvalues is computed in each dimension.
:param bool non_centered: whether to use a non-centered parameterization. By default, it is set to True
:return: the low-rank approximation linear model
:rtype: ArrayImpl
"""
dim = x.shape[-1] if x.ndim > 1 else 1
phi = eigenfunctions(x=x, ell=ell, m=m)
spd = jnp.sqrt(
diag_spectral_density_squared_exponential(
alpha=alpha, length=length, ell=ell, m=m
alpha=alpha, length=length, ell=ell, m=m, dim=dim
)
)
return linear_approximation(phi=phi, spd=spd, m=m, non_centered=non_centered)
return linear_approximation(
phi=phi, spd=spd, m=phi.shape[-1], non_centered=non_centered
)


def hsgp_matern(
x: ArrayImpl,
nu: float,
alpha: float,
length: float,
ell: float,
m: int,
ell: float | int | list[float | int],
m: int | list[int],
non_centered: bool = True,
):
"""
Expand All @@ -118,28 +127,36 @@ def hsgp_matern(

**References:**

1. Solin, A., Särkkä, S. Hilbert space methods for reduced-rank Gaussian process regression.
Stat Comput 30, 419-446 (2020).
1. Solin, A., Särkkä, S. Hilbert space methods for reduced-rank Gaussian process regression.
Stat Comput 30, 419-446 (2020).

2. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).
2. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).

:param ArrayImpl x: input data
:param float nu: smoothness parameter
:param float alpha: amplitude of the squared exponential kernel
:param float length: length scale of the squared exponential kernel
:param float ell: positive value that parametrizes the length of the one-dimensional box so that the input data
lies in the interval [-ell, ell]. We expect the approximation to be valid within this interval.
:param int m: number of eigenvalues to compute and include in the approximation
:param float | int | list[float | int] ell: positive value that parametrizes the length of the D-dimensional box so
that the input data lies in the interval :math:`[-L_1, L_1] \\times ... \\times [-L_D, L_D]`.
We expect the approximation to be valid within this interval
:param int | list[m] m: number of eigenvalues to compute and include in the approximation for each dimension
(:math:`\\left\\{1, ..., D\\right\\}`).
If an integer, the same number of eigenvalues is computed in each dimension.
:param bool non_centered: whether to use a non-centered parameterization. By default, it is set to True.
:return: the low-rank approximation linear model
:rtype: ArrayImpl
"""
dim = x.shape[-1] if x.ndim > 1 else 1
phi = eigenfunctions(x=x, ell=ell, m=m)
spd = jnp.sqrt(
diag_spectral_density_matern(nu=nu, alpha=alpha, length=length, ell=ell, m=m)
diag_spectral_density_matern(
nu=nu, alpha=alpha, length=length, ell=ell, m=m, dim=dim
)
)
return linear_approximation(
phi=phi, spd=spd, m=phi.shape[-1], non_centered=non_centered
)
return linear_approximation(phi=phi, spd=spd, m=m, non_centered=non_centered)


def hsgp_periodic_non_centered(
Expand All @@ -152,8 +169,8 @@ def hsgp_periodic_non_centered(

**References:**

1. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).
1. Riutort-Mayol, G., Bürkner, PC., Andersen, M.R. et al. Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Stat Comput 33, 17 (2023).

:param ArrayImpl x: input data
:param float alpha: amplitude
Expand Down
Loading
Loading