Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(contrib.hsgp): convert matern spectral density from frequency domain #1811

Merged
merged 5 commits into from
Jun 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions numpyro/contrib/hsgp/laplacian.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,15 @@

from __future__ import annotations

from typing import Union, get_args

from jaxlib.xla_extension import ArrayImpl
import numpy as np

import jax
import jax.numpy as jnp

ARRAY_TYPE = Union[ArrayImpl, np.ndarray]


def eigenindices(m: list[int] | int, dim: int) -> ArrayImpl:
"""Returns the indices of the first :math:`D \\times m^\\star` eigenvalues of the laplacian operator.
Expand Down Expand Up @@ -210,7 +214,7 @@ def _convert_ell(
"The length of ell must be equal to the dimension of the space."
)
ell_ = jnp.array(ell)[..., None] # dim x 1 array
elif isinstance(ell, jax.Array):
elif isinstance(ell, get_args(ARRAY_TYPE)):
ell_ = ell
if ell_.shape != (dim, 1):
raise ValueError("ell must be a scalar or a list of length `dim`.")
Expand Down
5 changes: 3 additions & 2 deletions numpyro/contrib/hsgp/spectral_densities.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def spectral_density_matern(

S(\\boldsymbol{\\omega}) = \\alpha
\\frac{2^{D} \\pi^{D/2} \\Gamma(\\nu + D/2) (2 \\nu)^{\\nu}}{\\Gamma(\\nu) \\ell^{2 \\nu}}
\\left(\\frac{2 \\nu}{\\ell^2} + 4 \\pi^2 \\boldsymbol{\\omega}^{T} \\boldsymbol{\\omega}\\right)^{-\\nu - D/2}
\\left(\\frac{2 \\nu}{\\ell^2} + \\boldsymbol{\\omega}^{T} \\boldsymbol{\\omega}\\right)^{-\\nu - D/2}


**References:**
Expand All @@ -86,7 +86,7 @@ def spectral_density_matern(
* ((2 * nu) ** nu)
* special.gamma(nu + dim / 2)
)
c2 = ((2 * nu / (length**2)) + 4 * jnp.pi ** jnp.dot(w, w)) ** (-nu - dim / 2)
c2 = (2 * nu / (length**2) + jnp.dot(w, w)) ** (-nu - dim / 2)
c3 = special.gamma(nu) * length ** (2 * nu)
return c1 * c2 / c3

Expand Down Expand Up @@ -166,6 +166,7 @@ def modified_bessel_first_kind(v, z):
) from e

v = jnp.asarray(v, dtype=float)
z = jnp.asarray(z, dtype=float)
return jnp.exp(jnp.abs(z)) * tfp.math.bessel_ive(v, z)


Expand Down
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
"ruff>=0.1.8",
"pytest>=4.1",
"pyro-api>=0.1.1",
"scikit-learn",
"scipy>=1.9",
],
"dev": [
Expand Down
154 changes: 143 additions & 11 deletions test/contrib/hsgp/test_approximation.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,9 @@
from operator import mul
from typing import Literal

import numpy as np
import pytest
from sklearn.gaussian_process.kernels import RBF, ExpSineSquared, Matern

from jax import random
from jax._src.array import ArrayImpl
Expand All @@ -19,6 +21,12 @@
hsgp_periodic_non_centered,
hsgp_squared_exponential,
)
from numpyro.contrib.hsgp.laplacian import eigenfunctions, eigenfunctions_periodic
from numpyro.contrib.hsgp.spectral_densities import (
diag_spectral_density_matern,
diag_spectral_density_periodic,
diag_spectral_density_squared_exponential,
)
import numpyro.distributions as dist
from numpyro.handlers import scope, seed, trace

Expand Down Expand Up @@ -65,13 +73,137 @@ def synthetic_two_dim_data() -> tuple[ArrayImpl, ArrayImpl]:
return generate_synthetic_two_dim_data(**kwargs)


@pytest.mark.parametrize(
argnames="x1, x2, length, ell",
argvalues=[
(np.array([[1.0]]), np.array([[0.0]]), np.array([1.0]), 5.0),
(
np.array([[1.5, 1.25]]),
np.array([[0.0, 0.0]]),
np.array([1.0]),
5.0,
),
],
ids=[
"1d",
"2d,1d-length",
],
)
def test_kernel_approx_squared_exponential(
x1: ArrayImpl, x2: ArrayImpl, length: ArrayImpl, ell: float
):
"""ensure that the approximation of the squared exponential kernel is accurate,
matching the exact kernel implementation from sklearn.

See Riutort-Mayol 2023 equation (13) for the approximation formula.
"""
assert x1.shape == x2.shape
m = 100 # large enough to ensure the approximation is accurate
dim = x1.shape[-1]
spd = diag_spectral_density_squared_exponential(1.0, length, ell, m, dim)

eig_f1 = eigenfunctions(x1, ell=ell, m=m)
eig_f2 = eigenfunctions(x2, ell=ell, m=m)
approx = (eig_f1 * eig_f2) @ spd
exact = RBF(length)(x1, x2)
assert jnp.isclose(approx, exact, rtol=1e-3)


@pytest.mark.parametrize(
argnames="x1, x2, nu, length, ell",
argvalues=[
(np.array([[1.0]]), np.array([[0.0]]), 3 / 2, np.array([1.0]), 5.0),
(np.array([[1.0]]), np.array([[0.0]]), 5 / 2, np.array([1.0]), 5.0),
(
np.array([[1.5, 1.25]]),
np.array([[0.0, 0.0]]),
3 / 2,
np.array([1.0]),
5.0,
),
(
np.array([[1.5, 1.25]]),
np.array([[0.0, 0.0]]),
5 / 2,
np.array([1.0]),
5.0,
),
],
ids=[
"1d,nu=3/2",
"1d,nu=5/2",
"2d,nu=3/2,1d-length",
"2d,nu=5/2,1d-length",
],
)
def test_kernel_approx_squared_matern(
x1: ArrayImpl, x2: ArrayImpl, nu: float, length: ArrayImpl, ell: float
):
"""ensure that the approximation of the matern kernel is accurate,
matching the exact kernel implementation from sklearn.

See Riutort-Mayol 2023 equation (13) for the approximation formula.
"""
assert x1.shape == x2.shape
m = 100 # large enough to ensure the approximation is accurate
dim = x1.shape[-1]
spd = diag_spectral_density_matern(
nu=nu, alpha=1.0, length=length, ell=ell, m=m, dim=dim
)

eig_f1 = eigenfunctions(x1, ell=ell, m=m)
eig_f2 = eigenfunctions(x2, ell=ell, m=m)
approx = (eig_f1 * eig_f2) @ spd
exact = Matern(length_scale=length, nu=nu)(x1, x2)
assert jnp.isclose(approx, exact, rtol=1e-3)


@pytest.mark.parametrize(
argnames="x1, x2, w0, length",
argvalues=[
(np.array([1.0]), np.array([0.0]), 1.0, 1.0),
(np.array([1.0]), np.array([0.0]), 1.5, 1.0),
],
ids=[
"1d,w0=1.0",
"1d,w0=1.5",
],
)
def test_kernel_approx_periodic(
x1: ArrayImpl,
x2: ArrayImpl,
w0: float,
length: float,
):
"""ensure that the approximation of the periodic kernel is accurate,
matching the exact kernel implementation from sklearn

Note that the exact kernel implementation is parameterized with respect to the period,
and the periodicity is w0**(-1). We adjust the input values by dividing by 2*pi.

See Riutort-Mayol 2023 appendix B for the approximation formula.
"""
assert x1.shape == x2.shape
m = 100
q2 = diag_spectral_density_periodic(alpha=1.0, length=length, m=m)
q2_sine = jnp.concatenate([jnp.array([0.0]), q2[1:]])

cosines_f1, sines_f1 = eigenfunctions_periodic(x1, w0=w0, m=m)
cosines_f2, sines_f2 = eigenfunctions_periodic(x2, w0=w0, m=m)
approx = (cosines_f1 * cosines_f2) @ q2 + (sines_f1 * sines_f2) @ q2_sine
exact = ExpSineSquared(length_scale=length, periodicity=w0 ** (-1))(
x1[..., None] / (2 * jnp.pi), x2[..., None] / (2 * jnp.pi)
)
assert jnp.isclose(approx, exact, rtol=1e-3)


@pytest.mark.parametrize(
argnames="x, alpha, length, ell, m, non_centered",
argvalues=[
(jnp.linspace(0, 1, 10), 1.0, 0.2, 12, 10, True),
(jnp.linspace(0, 1, 10), 1.0, 0.2, 12, 10, False),
(jnp.linspace(0, 10, 100), 3.0, 0.5, 120, 100, True),
(jnp.linspace(jnp.zeros(2), jnp.ones(2), 10), 1.0, 0.2, 12, [3, 3], True),
(np.linspace(0, 1, 10), 1.0, 0.2, 12, 10, True),
(np.linspace(0, 1, 10), 1.0, 0.2, 12, 10, False),
(np.linspace(0, 10, 100), 3.0, 0.5, 120, 100, True),
(np.linspace(np.zeros(2), np.ones(2), 10), 1.0, 0.2, 12, [3, 3], True),
],
ids=["non_centered", "centered", "non_centered-large-domain", "non_centered-2d"],
)
Expand Down Expand Up @@ -111,11 +243,11 @@ def model(x, alpha, length, ell, m, non_centered):
@pytest.mark.parametrize(
argnames="x, nu, alpha, length, ell, m, non_centered",
argvalues=[
(jnp.linspace(0, 1, 10), 3 / 2, 1.0, 0.2, 12, 10, True),
(jnp.linspace(0, 1, 10), 5 / 2, 1.0, 0.2, 12, 10, False),
(jnp.linspace(0, 10, 100), 7 / 2, 3.0, 0.5, 120, 100, True),
(np.linspace(0, 1, 10), 3 / 2, 1.0, 0.2, 12, 10, True),
(np.linspace(0, 1, 10), 5 / 2, 1.0, 0.2, 12, 10, False),
(np.linspace(0, 10, 100), 7 / 2, 3.0, 0.5, 120, 100, True),
(
jnp.linspace(jnp.zeros(2), jnp.ones(2), 10),
np.linspace(np.zeros(2), np.ones(2), 10),
3 / 2,
1.0,
0.2,
Expand Down Expand Up @@ -289,9 +421,9 @@ def model(x, nu, ell, m, non_centered, y=None):
@pytest.mark.parametrize(
argnames="w0, m",
argvalues=[
(2 * jnp.pi / 7, 2),
(2 * jnp.pi / 10, 3),
(2 * jnp.pi / 5, 10),
(2 * np.pi / 7, 2),
(2 * np.pi / 10, 3),
(2 * np.pi / 5, 10),
],
ids=["m=2", "m=3", "m=10"],
)
Expand Down
17 changes: 9 additions & 8 deletions test/contrib/hsgp/test_laplacian.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from functools import reduce
from operator import mul

import numpy as np
import pytest

from jax._src.array import ArrayImpl
Expand Down Expand Up @@ -96,13 +97,13 @@ def test_sqrt_eigenvalues(ell: float | int, m: int | list[int], dim: int):
@pytest.mark.parametrize(
argnames="x, ell, m",
argvalues=[
(jnp.linspace(0, 1, 10), 1, 1),
(jnp.linspace(-1, 1, 10), 1, 21),
(jnp.linspace(-2, -1, 10), 2, 10),
(jnp.linspace(0, 100, 500), 120, 100),
(jnp.linspace(jnp.zeros(3), jnp.ones(3), 10), 2, [2, 2, 3]),
(np.linspace(0, 1, 10), 1, 1),
(np.linspace(-1, 1, 10), 1, 21),
(np.linspace(-2, -1, 10), 2, 10),
(np.linspace(0, 100, 500), 120, 100),
(np.linspace(np.zeros(3), np.ones(3), 10), 2, [2, 2, 3]),
(
jnp.linspace(jnp.zeros(3), jnp.ones(3), 100).reshape((10, 10, 3)),
np.linspace(np.zeros(3), np.ones(3), 100).reshape((10, 10, 3)),
2,
[2, 2, 3],
),
Expand All @@ -129,8 +130,8 @@ def test_eigenfunctions(x: ArrayImpl, ell: float | int, m: int | list[int]):
(1, 1, False),
(1, 2, False),
([1, 1], 2, False),
(jnp.array([1, 1])[..., None], 2, False),
(jnp.array([1, 1]), 2, True),
(np.array([1, 1])[..., None], 2, False),
(np.array([1, 1]), 2, True),
([1, 1], 1, True),
],
ids=[
Expand Down
13 changes: 7 additions & 6 deletions test/contrib/hsgp/test_spectral_densities.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from functools import reduce
from operator import mul

import numpy as np
import pytest

import jax.numpy as jnp
Expand All @@ -22,8 +23,8 @@
argnames="dim, w, alpha, length",
argvalues=[
(1, 0.1, 1.0, 0.2),
(2, jnp.array([0.1, 0.2]), 1.0, 0.2),
(3, jnp.array([0.1, 0.2, 0.3]), 1.0, 5.0),
(2, np.array([0.1, 0.2]), 1.0, 0.2),
(3, np.array([0.1, 0.2, 0.3]), 1.0, 5.0),
],
ids=["dim=1", "dim=2", "dim=3"],
)
Expand All @@ -39,8 +40,8 @@ def test_spectral_density_squared_exponential(dim, w, alpha, length):
argnames="dim, nu, w, alpha, length",
argvalues=[
(1, 3 / 2, 0.1, 1.0, 0.2),
(2, 5 / 2, jnp.array([0.1, 0.2]), 1.0, 0.2),
(3, 5 / 2, jnp.array([0.1, 0.2, 0.3]), 1.0, 5.0),
(2, 5 / 2, np.array([0.1, 0.2]), 1.0, 0.2),
(3, 5 / 2, np.array([0.1, 0.2, 0.3]), 1.0, 5.0),
],
ids=["dim=1", "dim=2", "dim=3"],
)
Expand Down Expand Up @@ -113,8 +114,8 @@ def test_modified_bessel_first_kind_one_dim(v, z):
@pytest.mark.parametrize(
argnames="v, z",
argvalues=[
(jnp.linspace(0.1, 1.0, 10), jnp.array([0.1])),
(jnp.linspace(0.1, 1.0, 10), jnp.linspace(0.1, 1.0, 10)),
(np.linspace(0.1, 1.0, 10), np.array([0.1])),
(np.linspace(0.1, 1.0, 10), np.linspace(0.1, 1.0, 10)),
],
ids=["z=0.1", "z=0.2"],
)
Expand Down
Loading