Skip to content
This repository has been archived by the owner on Aug 7, 2024. It is now read-only.

[3/x] clean up casting functions: delete to_fp8_no_autograd #347

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 6 additions & 7 deletions float8_experimental/float8_scaling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
LinearMMConfig,
ScaledMMConfig,
tensor_already_casted_to_fp8,
to_fp8_no_autograd,
ToFloat8ConstrFunc,
)

Expand Down Expand Up @@ -146,12 +145,12 @@ def backward(ctx, go):

fp8_amax_grad_output.fill_(tensor_to_amax(go))

res = to_fp8_no_autograd(
res = ToFloat8ConstrFunc.apply(
go,
fp8_scale_grad_output,
e5m2_dtype,
linear_mm_config=ctx.linear_mm_config,
gemm_input_role=GemmInputRole.GRAD_OUTPUT,
ctx.linear_mm_config,
GemmInputRole.GRAD_OUTPUT,
)
empty_grads = None, None, None, None, None, None
return res, *empty_grads
Expand All @@ -178,11 +177,11 @@ def backward(ctx, gradY):
if tensor_already_casted_to_fp8(gradY):
return gradY, None
gradY_scale = tensor_to_scale(gradY, e5m2_dtype)
fp8_tensor = to_fp8_no_autograd(
fp8_tensor = ToFloat8ConstrFunc.apply(
gradY,
gradY_scale,
e5m2_dtype,
linear_mm_config=ctx.linear_mm_config,
gemm_input_role=GemmInputRole.GRAD_OUTPUT,
ctx.linear_mm_config,
GemmInputRole.GRAD_OUTPUT,
)
return fp8_tensor, None
117 changes: 45 additions & 72 deletions float8_experimental/float8_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,71 +128,6 @@ def tensor_already_casted_to_fp8(tensor: torch.Tensor) -> bool:
return False


# TODO: rename to hp_tensor_and_scale_to_float8_tensor
def to_fp8_no_autograd(
x: torch.Tensor,
x_scale: torch.Tensor,
float8_dtype: torch.dtype,
linear_mm_config: Optional[LinearMMConfig],
gemm_input_role: Optional[GemmInputRole],
) -> "Float8Tensor":
"""Convert a tensor to float8 without autograd
This is used in multiple places in the codebase to convert a tensor to float8

This function will apply the scaling, and then convert to a Float8Tensor

Note:
We will call this function with a DTensor subclass. Ideally this would be an aten OP
that DTensor could overload to ensure proper semantics. There are some techincal issues
with that composing with FakeTensor, so we special case here.

DTensor Invariant: DTensor must always be the outer most tensor subclass

Args:
x: the tensor to convert
scale: the scale to use to convert the tensor
float8_dtype: the float8 dtype to use
linear_mm_config: Defines the configuration for the scaled_mm for
the 3 fwd/bwd gemms of linear
gemm_input_role: Defines the role of this tensor (x, w or dL_dY) in
the 3 fwd/bwd gemms of linear
"""
x_scaled = x * x_scale
bits_fp8 = to_fp8_saturated(x_scaled, float8_dtype)

if isinstance(bits_fp8, DTensor):
assert isinstance(
x, DTensor
), "Expected Float8 scale to be a DTensor if bits_fp8 is a DTensor"
bits_mesh = bits_fp8.device_mesh
bits_placements = bits_fp8.placements
local_bits = bits_fp8.to_local()
local_scale = x_scale.to_local()
inner_float8_tensor = Float8Tensor(
local_bits,
local_scale,
x.dtype,
linear_mm_config=linear_mm_config,
gemm_input_role=gemm_input_role,
)
return DTensor.from_local(
inner_float8_tensor,
bits_mesh,
bits_placements,
run_check=False,
shape=bits_fp8.size(),
stride=bits_fp8.stride(),
)

return Float8Tensor(
bits_fp8,
x_scale,
x.dtype,
linear_mm_config=linear_mm_config,
gemm_input_role=gemm_input_role,
)


@torch._dynamo.allow_in_graph
class ToFloat8ConstrFunc(torch.autograd.Function):
"""
Expand All @@ -210,18 +145,56 @@ def forward(
linear_mm_config: Optional[LinearMMConfig] = None,
gemm_input_role: Optional[GemmInputRole] = GemmInputRole.INPUT,
):
"""Autograd enabled wrapper around to_fp8_no_autograd that will also populate the amax buffer.
Args
"""
This function will apply the scaling, and then convert to a Float8Tensor

Note:
We will call this function with a DTensor subclass. Ideally this would be an aten OP
that DTensor could overload to ensure proper semantics. There are some techincal issues
with that composing with FakeTensor, so we special case here.

DTensor Invariant: DTensor must always be the outer most tensor subclass

Args:
tensor: the tensor to convert
scale: the scale to use to convert the tensor
float8_dtype: the float8 dtype either, torch.float8_e4m3fn or torch.float8_e5m2fn
emulate: whether to emulate the matmuls in fp32
float8_dtype: the float8 dtype to use
linear_mm_config: Defines the configuration for the scaled_mm for
the 3 fwd/bwd gemms of linear
gemm_input_role: Defines the role of this tensor (input, weight or grad_output) in
the 3 fwd/bwd gemms of linear
"""
tensor_scaled = tensor * scale
bits_fp8 = to_fp8_saturated(tensor_scaled, float8_dtype)

if isinstance(bits_fp8, DTensor):
assert isinstance(
scale, DTensor
), "Expected Float8 scale to be a DTensor if bits_fp8 is a DTensor"
bits_mesh = bits_fp8.device_mesh
bits_placements = bits_fp8.placements
local_bits = bits_fp8.to_local()
local_scale = scale.to_local()
inner_float8_tensor = Float8Tensor(
local_bits,
local_scale,
tensor.dtype,
linear_mm_config=linear_mm_config,
gemm_input_role=gemm_input_role,
)
return DTensor.from_local(
inner_float8_tensor,
bits_mesh,
bits_placements,
run_check=False,
shape=bits_fp8.size(),
stride=bits_fp8.stride(),
)

return to_fp8_no_autograd(
tensor,
return Float8Tensor(
bits_fp8,
scale,
float8_dtype,
tensor.dtype,
linear_mm_config=linear_mm_config,
gemm_input_role=gemm_input_role,
)
Expand Down
Loading