-
Notifications
You must be signed in to change notification settings - Fork 479
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add test_load_state_dict for sequence embeddings (#1706)
Summary: Pull Request resolved: #1706 Follow test_load_state_dict in test_model_parallel_base.py, add similar test for sequence embeddings. Reviewed By: sarckk Differential Revision: D53295758 fbshipit-source-id: 62602dc6ef06d5cbb4f2e3f057be0920a01069b8
- Loading branch information
1 parent
7b4b1dd
commit 0eca3ca
Showing
1 changed file
with
232 additions
and
0 deletions.
There are no files selected for viewing
232 changes: 232 additions & 0 deletions
232
torchrec/distributed/tests/test_sequence_model_parallel_single_rank.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
|
||
import os | ||
import unittest | ||
from typing import cast, Dict, List, Optional, OrderedDict, Tuple | ||
|
||
import hypothesis.strategies as st | ||
import torch | ||
from hypothesis import given, settings, Verbosity | ||
from torch import distributed as dist, nn | ||
from torchrec import distributed as trec_dist | ||
from torchrec.distributed import DistributedModelParallel | ||
from torchrec.distributed.embedding_types import EmbeddingComputeKernel | ||
from torchrec.distributed.model_parallel import get_default_sharders | ||
from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology | ||
from torchrec.distributed.test_utils.test_model import ModelInput | ||
from torchrec.distributed.tests.test_sequence_model import ( | ||
TestEmbeddingCollectionSharder, | ||
TestSequenceSparseNN, | ||
) | ||
from torchrec.distributed.types import ( | ||
ModuleSharder, | ||
ShardedTensor, | ||
ShardingEnv, | ||
ShardingType, | ||
) | ||
from torchrec.modules.embedding_configs import EmbeddingConfig | ||
from torchrec.test_utils import get_free_port | ||
|
||
|
||
class SequenceModelParallelStateDictTest(unittest.TestCase): | ||
def setUp(self) -> None: | ||
os.environ["RANK"] = "0" | ||
os.environ["WORLD_SIZE"] = "1" | ||
os.environ["LOCAL_WORLD_SIZE"] = "1" | ||
os.environ["MASTER_ADDR"] = str("localhost") | ||
os.environ["MASTER_PORT"] = str(get_free_port()) | ||
|
||
self.backend = "nccl" | ||
if torch.cuda.is_available(): | ||
self.device = torch.device("cuda:0") | ||
torch.cuda.set_device(self.device) | ||
else: | ||
self.device = torch.device("cpu") | ||
|
||
dist.init_process_group(backend=self.backend) | ||
|
||
num_features = 4 | ||
self.num_float_features = 16 | ||
self.batch_size = 3 | ||
shared_features = 2 | ||
|
||
initial_tables = [ | ||
EmbeddingConfig( | ||
num_embeddings=(i + 1) * 11, | ||
embedding_dim=16, | ||
name="table_" + str(i), | ||
feature_names=["feature_" + str(i)], | ||
) | ||
for i in range(num_features) | ||
] | ||
|
||
shared_features_tables = [ | ||
EmbeddingConfig( | ||
num_embeddings=(i + 1) * 11, | ||
embedding_dim=16, | ||
name="table_" + str(i + num_features), | ||
feature_names=["feature_" + str(i)], | ||
) | ||
for i in range(shared_features) | ||
] | ||
|
||
self.tables = initial_tables + shared_features_tables | ||
self.shared_features = [f"feature_{i}" for i in range(shared_features)] | ||
|
||
self.embedding_groups = { | ||
"group_0": [ | ||
f"{feature}@{table.name}" | ||
if feature in self.shared_features | ||
else feature | ||
for table in self.tables | ||
for feature in table.feature_names | ||
] | ||
} | ||
|
||
def tearDown(self) -> None: | ||
dist.destroy_process_group() | ||
|
||
def _generate_dmps_and_batch( | ||
self, | ||
sharders: Optional[List[ModuleSharder[nn.Module]]] = None, | ||
constraints: Optional[Dict[str, trec_dist.planner.ParameterConstraints]] = None, | ||
) -> Tuple[List[DistributedModelParallel], ModelInput]: | ||
""" | ||
Generate two DMPs based on Sequence Sparse NN and one batch of data. | ||
""" | ||
if constraints is None: | ||
constraints = {} | ||
if sharders is None: | ||
sharders = get_default_sharders() | ||
|
||
_, local_batch = ModelInput.generate( | ||
batch_size=self.batch_size, | ||
world_size=1, | ||
tables=self.tables, | ||
num_float_features=self.num_float_features, | ||
weighted_tables=[], | ||
) | ||
batch = local_batch[0].to(self.device) | ||
|
||
dmps = [] | ||
pg = dist.GroupMember.WORLD | ||
assert pg is not None, "Process group is not initialized" | ||
env = ShardingEnv.from_process_group(pg) | ||
|
||
planner = EmbeddingShardingPlanner( | ||
topology=Topology( | ||
local_world_size=trec_dist.comm.get_local_size(env.world_size), | ||
world_size=env.world_size, | ||
compute_device=self.device.type, | ||
), | ||
constraints=constraints, | ||
) | ||
|
||
for _ in range(2): | ||
# Create two TestSparseNN modules, wrap both in DMP | ||
m = TestSequenceSparseNN( | ||
tables=self.tables, | ||
num_float_features=self.num_float_features, | ||
embedding_groups=self.embedding_groups, | ||
dense_device=self.device, | ||
sparse_device=torch.device("meta"), | ||
) | ||
if pg is not None: | ||
plan = planner.collective_plan(m, sharders, pg) | ||
else: | ||
plan = planner.plan(m, sharders) | ||
|
||
dmp = DistributedModelParallel( | ||
module=m, | ||
init_data_parallel=False, | ||
device=self.device, | ||
sharders=sharders, | ||
plan=plan, | ||
) | ||
|
||
with torch.no_grad(): | ||
dmp(batch) | ||
dmp.init_data_parallel() | ||
dmps.append(dmp) | ||
return (dmps, batch) | ||
|
||
@unittest.skipIf( | ||
torch.cuda.device_count() <= 0, | ||
"Not enough GPUs, this test requires at least one GPU", | ||
) | ||
# pyre-ignore[56] | ||
@given( | ||
sharding_type=st.sampled_from( | ||
[ | ||
ShardingType.TABLE_WISE.value, | ||
ShardingType.COLUMN_WISE.value, | ||
ShardingType.ROW_WISE.value, | ||
] | ||
), | ||
kernel_type=st.sampled_from( | ||
[ | ||
EmbeddingComputeKernel.FUSED.value, | ||
EmbeddingComputeKernel.FUSED_UVM_CACHING.value, | ||
EmbeddingComputeKernel.FUSED_UVM.value, | ||
] | ||
), | ||
is_training=st.booleans(), | ||
) | ||
@settings(verbosity=Verbosity.verbose, max_examples=2, deadline=None) | ||
def test_load_state_dict( | ||
self, | ||
sharding_type: str, | ||
kernel_type: str, | ||
is_training: bool, | ||
) -> None: | ||
sharders = [ | ||
cast( | ||
ModuleSharder[nn.Module], | ||
TestEmbeddingCollectionSharder( | ||
sharding_type=sharding_type, | ||
kernel_type=kernel_type, | ||
), | ||
), | ||
] | ||
models, batch = self._generate_dmps_and_batch(sharders) | ||
m1, m2 = models | ||
|
||
# load the second's (m2's) with the first (m1's) state_dict | ||
m2.load_state_dict(cast("OrderedDict[str, torch.Tensor]", m1.state_dict())) | ||
|
||
# validate the models are equivalent | ||
if is_training: | ||
for _ in range(2): | ||
loss1, pred1 = m1(batch) | ||
loss2, pred2 = m2(batch) | ||
loss1.backward() | ||
loss2.backward() | ||
self.assertTrue(torch.equal(loss1, loss2)) | ||
self.assertTrue(torch.equal(pred1, pred2)) | ||
else: | ||
with torch.no_grad(): | ||
loss1, pred1 = m1(batch) | ||
loss2, pred2 = m2(batch) | ||
self.assertTrue(torch.equal(loss1, loss2)) | ||
self.assertTrue(torch.equal(pred1, pred2)) | ||
|
||
sd1 = m1.state_dict() | ||
for key, value in m2.state_dict().items(): | ||
v2 = sd1[key] | ||
if isinstance(value, ShardedTensor): | ||
assert len(value.local_shards()) == 1 | ||
dst = value.local_shards()[0].tensor | ||
else: | ||
dst = value | ||
if isinstance(v2, ShardedTensor): | ||
assert len(v2.local_shards()) == 1 | ||
src = v2.local_shards()[0].tensor | ||
else: | ||
src = v2 | ||
self.assertTrue(torch.equal(src, dst)) |