Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Integrate new released Falcon3 Family base models #2171

Open
wants to merge 1 commit into
base: nightly
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions recipes/configs/falcon3/10B_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Falcon3 10B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download tiiuae/Falcon3-10B-Base --output-dir /tmp/Falcon3-10B --ignore-patterns None
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config falcon3/10B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config falcon3/10B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# Single device full finetuning requires more memory optimizations. It's
# best to use 10B_full.yaml for those cases

# Tokenizer
tokenizer:
_component_: torchtune.models.falcon3.falcon3_tokenizer
path: /tmp/Falcon3-10B-Base/tokenizer.json
max_seq_len: null

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.falcon3.falcon3_10b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Falcon3-10B-Base
checkpoint_files: [
model-00001-of-00005.safetensors,
model-00002-of-00005.safetensors,
model-00003-of-00005.safetensors,
model-00004-of-00005.safetensors,
model-00005-of-00005.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Falcon3-10B-Base
model_type: FALCON3
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 5e-6
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Falcon3-10B-Base-finetune
log_every_n_steps: 1
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
108 changes: 108 additions & 0 deletions recipes/configs/falcon3/10B_full_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# Config for single device full finetuning in full_finetune_single_device.py
# using a Falcon3 10B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download tiiuae/Falcon3-10B-Base --output-dir /tmp/Falcon3-10B --ignore-patterns None
#
# The default config uses an optimizer from bitsandbytes. If you do not have it installed,
# you can install it with
# pip install bitsandbytes
#
# To launch on a single device, run the following command from root:
# tune run full_finetune_single_device --config falcon3/10B_full_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run full_finetune_single_device --config falcon3/10B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

# Tokenizer
tokenizer:
_component_: torchtune.models.falcon3.falcon3_tokenizer
path: /tmp/Falcon3-10B-Base/tokenizer.json
max_seq_len: null

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.falcon3.falcon3_10b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Falcon3-10B-Base
checkpoint_files: [
model-00001-of-00005.safetensors,
model-00002-of-00005.safetensors,
model-00003-of-00005.safetensors,
model-00004-of-00005.safetensors,
model-00005-of-00005.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Falcon3-10B-Base
model_type: FALCON3
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 1
epochs: 1
optimizer:
_component_: torch.optim.AdamW
lr: 5e-6
optimizer_in_bwd: True # True saves memory. Requires gradient_accumulation_steps=1
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Training environment
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Falcon3-10B-Base-finetune
log_every_n_steps: 1
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
117 changes: 117 additions & 0 deletions recipes/configs/falcon3/10B_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
# using a Falcon3 10B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download tiiuae/Falcon3-10B-Base --output-dir /tmp/Falcon3-10B --ignore-patterns None
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config falcon3/10B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config falcon3/10B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 10B_lora_single_device.yaml


# Model Arguments
model:
_component_: torchtune.models.falcon3.lora_falcon3_10b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0

tokenizer:
_component_: torchtune.models.falcon3.falcon3_tokenizer
path: /tmp/Falcon3-10B-Base/tokenizer.json
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Falcon3-10B-Base
checkpoint_files: [
model-00001-of-00005.safetensors,
model-00002-of-00005.safetensors,
model-00003-of-00005.safetensors,
model-00004-of-00005.safetensors,
model-00005-of-00005.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Falcon3-10B-Base
model_type: FALCON3
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True


# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
batch_size: 2
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Falcon3-10B-Base-finetune
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler

enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
Loading