Skip to content

Commit

Permalink
update examples for literate docs
Browse files Browse the repository at this point in the history
  • Loading branch information
PSeitz committed Feb 17, 2023
1 parent 019db10 commit 95ac828
Show file tree
Hide file tree
Showing 10 changed files with 511 additions and 104 deletions.
351 changes: 270 additions & 81 deletions examples/aggregation.rs
Original file line number Diff line number Diff line change
@@ -1,129 +1,318 @@
// # Aggregation example
//
// This example shows how you can use built-in aggregations.
// We will use range buckets and compute the average in each bucket.
//
// We will use nested aggregations with buckets and metrics:
// - Range buckets and compute the average in each bucket.
// - Term aggregation and compute the min price in each bucket
// ---

use serde_json::Value;
use serde_json::{Deserializer, Value};
use tantivy::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
RangeAggregation,
};
use tantivy::aggregation::agg_result::AggregationResults;
use tantivy::aggregation::bucket::RangeAggregationRange;
use tantivy::aggregation::metric::AverageAggregation;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::TermQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing};
use tantivy::{doc, Index, Term};
use tantivy::query::AllQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing, FAST};
use tantivy::Index;

fn main() -> tantivy::Result<()> {
// # Create Schema
//
// Lets create a schema for a footwear shop, with 4 fields: name, category, stock and price.
// category, stock and price will be fast fields as that's the requirement
// for aggregation queries.
//

let mut schema_builder = Schema::builder();
// In preparation of the `TermsAggregation`, the category field is configured with:
// - `set_fast`
// - `raw` tokenizer
//
// The tokenizer is set to "raw", because the fast field uses the same dictionary as the
// inverted index. (This behaviour will change in tantivy 0.20, where the fast field will
// always be raw tokenized independent from the regular tokenizing)
//
let text_fieldtype = schema::TextOptions::default()
.set_indexing_options(
TextFieldIndexing::default().set_index_option(IndexRecordOption::WithFreqs),
TextFieldIndexing::default()
.set_index_option(IndexRecordOption::WithFreqs)
.set_tokenizer("raw"),
)
.set_fast()
.set_stored();
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let score_fieldtype = crate::schema::NumericOptions::default().set_fast();
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
let price_field = schema_builder.add_f64_field("price", score_fieldtype);
schema_builder.add_text_field("category", text_fieldtype);
schema_builder.add_f64_field("stock", FAST);
schema_builder.add_f64_field("price", FAST);

let schema = schema_builder.build();

// # Indexing documents
//
// Lets index a bunch of documents for this example.
let index = Index::create_in_ram(schema);
let index = Index::create_in_ram(schema.clone());

let data = r#"{
"name": "Almond Toe Court Shoes, Patent Black",
"category": "Womens Footwear",
"price": 99.00,
"stock": 5
}
{
"name": "Suede Shoes, Blue",
"category": "Womens Footwear",
"price": 42.00,
"stock": 4
}
{
"name": "Leather Driver Saddle Loafers, Tan",
"category": "Mens Footwear",
"price": 34.00,
"stock": 12
}
{
"name": "Flip Flops, Red",
"category": "Mens Footwear",
"price": 19.00,
"stock": 6
}
{
"name": "Flip Flops, Blue",
"category": "Mens Footwear",
"price": 19.00,
"stock": 0
}
{
"name": "Gold Button Cardigan, Black",
"category": "Womens Casualwear",
"price": 167.00,
"stock": 6
}
{
"name": "Cotton Shorts, Medium Red",
"category": "Womens Casualwear",
"price": 30.00,
"stock": 5
}
{
"name": "Fine Stripe Short SleeveShirt, Grey",
"category": "Mens Casualwear",
"price": 49.99,
"stock": 9
}
{
"name": "Fine Stripe Short SleeveShirt, Green",
"category": "Mens Casualwear",
"price": 49.99,
"offer": 39.99,
"stock": 9
}
{
"name": "Sharkskin Waistcoat, Charcoal",
"category": "Mens Formalwear",
"price": 75.00,
"stock": 2
}
{
"name": "Lightweight Patch PocketBlazer, Deer",
"category": "Mens Formalwear",
"price": 175.50,
"stock": 1
}
{
"name": "Bird Print Dress, Black",
"category": "Womens Formalwear",
"price": 270.00,
"stock": 10
}
{
"name": "Mid Twist Cut-Out Dress, Pink",
"category": "Womens Formalwear",
"price": 540.00,
"stock": 5
}"#;

let stream = Deserializer::from_str(data).into_iter::<Value>();

let mut index_writer = index.writer(50_000_000)?;
// writing the segment
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 1f64,
price_field => 0f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 3f64,
price_field => 1f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 5f64,
price_field => 1f64,
))?;
index_writer.add_document(doc!(
text_field => "nohit",
highscore_field => 6f64,
price_field => 2f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 7f64,
price_field => 2f64,
))?;
index_writer.commit()?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 11f64,
price_field => 10f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 14f64,
price_field => 15f64,
))?;

index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 15f64,
price_field => 20f64,
))?;
let mut num_indexed = 0;
for value in stream {
let doc = schema.parse_document(&serde_json::to_string(&value.unwrap())?)?;
index_writer.add_document(doc)?;
num_indexed += 1;
if num_indexed > 4 {
// Writing the first segment
index_writer.commit()?;
}
}

// Writing the second segment
index_writer.commit()?;

// We have two segments now. The `AggregationCollector` will run the aggregation on each
// segment and then merge the results into an `IntermediateAggregationResult`.

let reader = index.reader()?;
let text_field = reader.searcher().schema().get_field("text").unwrap();

let term_query = TermQuery::new(
Term::from_field_text(text_field, "cool"),
IndexRecordOption::Basic,
);

let sub_agg_req_1: Aggregations = vec![(
"average_price".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("price".to_string()),
)),
)]
.into_iter()
.collect();
let searcher = reader.searcher();
// ---
// # Aggregation Query
//
//
// We can construct the query by building the request structure or by deserializing from JSON.
// The JSON API is more stable and therefore recommended.
//
// ## Request 1

let agg_req_str = r#"
{
"group_by_stock": {
"aggs": {
"average_price": { "avg": { "field": "price" } }
},
"range": {
"field": "stock",
"ranges": [
{ "key": "few", "to": 1.0 },
{ "key": "some", "from": 1.0, "to": 10.0 },
{ "key": "many", "from": 10.0 }
]
}
}
} "#;

// In this Aggregation we want to get the average price for different groups, depending on how
// many items are in stock. We define custom ranges `few`, `some`, `many` via the
// range aggregation.
// For every bucket we want the average price, so we create a nested metric aggregation on the range bucket
// aggregation. Only buckets support nested aggregations.
// ### Request JSON API
//

let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());

let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res2: Value = serde_json::to_value(agg_res)?;

// ### Request Rust API
//
// This is exactly the same request as above, but via the rust structures.
//

let agg_req_1: Aggregations = vec![(
"score_ranges".to_string(),
let agg_req: Aggregations = vec![(
"group_by_stock".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "highscore".to_string(),
field: "stock".to_string(),
ranges: vec![
(-1f64..9f64).into(),
(9f64..14f64).into(),
(14f64..20f64).into(),
RangeAggregationRange {
key: Some("few".into()),
from: None,
to: Some(1f64),
},
RangeAggregationRange {
key: Some("some".into()),
from: Some(1f64),
to: Some(10f64),
},
RangeAggregationRange {
key: Some("many".into()),
from: Some(10f64),
to: None,
},
],
..Default::default()
}),
sub_aggregation: sub_agg_req_1,
sub_aggregation: vec![(
"average_price".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("price".to_string()),
)),
)]
.into_iter()
.collect(),
}),
)]
.into_iter()
.collect();

let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
// We use the `AllQuery` which will pass all documents to the AggregationCollector.
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();

let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
let res1: Value = serde_json::to_value(agg_res)?;

// ### Aggregation Result
//
// The resulting structure deserializes in the same JSON format as elastic search.
//
let expected_res = r#"
{
"group_by_stock":{
"buckets":[
{"average_price":{"value":19.0},"doc_count":1,"key":"few","to":1.0},
{"average_price":{"value":124.748},"doc_count":10,"from":1.0,"key":"some","to":10.0},
{"average_price":{"value":152.0},"doc_count":2,"from":10.0,"key":"many"}
]
}
}
"#;
let expected_json: Value = serde_json::from_str(expected_res)?;
assert_eq!(expected_json, res1);
assert_eq!(expected_json, res2);

// ### Request 2
//
// Now we are interested in the minimum price per category, so we create a bucket per
// category via `TermsAggregation`. We are interested in the highest minimum prices, and set the order of
// the buckets `"order": { "min_price": "desc" }` to be sorted by the the metric of the sub aggregation. (awesome)
//
let agg_req_str = r#"
{
"min_price_per_category": {
"aggs": {
"min_price": { "min": { "field": "price" } }
},
"terms": {
"field": "category",
"min_doc_count": 1,
"order": { "min_price": "desc" }
}
}
} "#;

let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;

let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());

let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::to_value(agg_res)?;
println!("{}", serde_json::to_string_pretty(&res)?);

// Minimum price per category, sorted by minimum price descending
//
// As you can see, the starting prices for `Formalwear` are higher than `Casualwear`.
//
let expected_res = r#"
{
"min_price_per_category": {
"buckets": [
{ "doc_count": 2, "key": "Womens Formalwear", "min_price": { "value": 270.0 } },
{ "doc_count": 2, "key": "Mens Formalwear", "min_price": { "value": 75.0 } },
{ "doc_count": 2, "key": "Mens Casualwear", "min_price": { "value": 49.99 } },
{ "doc_count": 2, "key": "Womens Footwear", "min_price": { "value": 42.0 } },
{ "doc_count": 2, "key": "Womens Casualwear", "min_price": { "value": 30.0 } },
{ "doc_count": 3, "key": "Mens Footwear", "min_price": { "value": 19.0 } }
],
"sum_other_doc_count": 0
}
}
"#;
let expected_json: Value = serde_json::from_str(expected_res)?;

assert_eq!(expected_json, res);

Ok(())
}
Loading

0 comments on commit 95ac828

Please sign in to comment.