Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix DateHistogram bucket gap #2183

Merged
merged 2 commits into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/coverage.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,11 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Install Rust
run: rustup toolchain install nightly --profile minimal --component llvm-tools-preview
run: rustup toolchain install nightly-2023-09-10 --profile minimal --component llvm-tools-preview
- uses: Swatinem/rust-cache@v2
- uses: taiki-e/install-action@cargo-llvm-cov
- name: Generate code coverage
run: cargo +nightly llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
run: cargo +nightly-2023-09-10 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
continue-on-error: true
Expand Down
139 changes: 139 additions & 0 deletions src/aggregation/agg_limits.rs
Original file line number Diff line number Diff line change
Expand Up @@ -134,3 +134,142 @@ impl Drop for ResourceLimitGuard {
.fetch_sub(self.allocated_with_the_guard, Ordering::Relaxed);
}
}

#[cfg(test)]
mod tests {
use crate::aggregation::tests::exec_request_with_query;

// https://github.com/quickwit-oss/quickwit/issues/3837
#[test]
fn test_agg_limits_with_empty_merge() {
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::bucket::tests::get_test_index_from_docs;

let docs = vec![
vec![r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb", "text2": "bbb" }"#],
vec![r#"{ "text": "aaa", "text2": "bbb" }"#],
];
let index = get_test_index_from_docs(false, &docs).unwrap();

{
let elasticsearch_compatible_json = json!(
{
"1": {
"terms": {"field": "text2", "min_doc_count": 0},
"aggs": {
"2":{
"date_histogram": {
"field": "date",
"fixed_interval": "1d",
"extended_bounds": {
"min": "2015-01-01T00:00:00Z",
"max": "2015-01-10T00:00:00Z"
}
}
}
}
}
}
);

let agg_req: Aggregations = serde_json::from_str(
&serde_json::to_string(&elasticsearch_compatible_json).unwrap(),
)
.unwrap();
let res = exec_request_with_query(agg_req, &index, Some(("text", "bbb"))).unwrap();
let expected_res = json!({
"1": {
"buckets": [
{
"2": {
"buckets": [
{ "doc_count": 0, "key": 1420070400000.0, "key_as_string": "2015-01-01T00:00:00Z" },
{ "doc_count": 1, "key": 1420156800000.0, "key_as_string": "2015-01-02T00:00:00Z" },
{ "doc_count": 0, "key": 1420243200000.0, "key_as_string": "2015-01-03T00:00:00Z" },
{ "doc_count": 0, "key": 1420329600000.0, "key_as_string": "2015-01-04T00:00:00Z" },
{ "doc_count": 0, "key": 1420416000000.0, "key_as_string": "2015-01-05T00:00:00Z" },
{ "doc_count": 0, "key": 1420502400000.0, "key_as_string": "2015-01-06T00:00:00Z" },
{ "doc_count": 0, "key": 1420588800000.0, "key_as_string": "2015-01-07T00:00:00Z" },
{ "doc_count": 0, "key": 1420675200000.0, "key_as_string": "2015-01-08T00:00:00Z" },
{ "doc_count": 0, "key": 1420761600000.0, "key_as_string": "2015-01-09T00:00:00Z" },
{ "doc_count": 0, "key": 1420848000000.0, "key_as_string": "2015-01-10T00:00:00Z" }
]
},
"doc_count": 1,
"key": "bbb"
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
});
assert_eq!(res, expected_res);
}
}

// https://github.com/quickwit-oss/quickwit/issues/3837
#[test]
fn test_agg_limits_with_empty_data() {
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::bucket::tests::get_test_index_from_docs;

let docs = vec![vec![r#"{ "text": "aaa", "text2": "bbb" }"#]];
let index = get_test_index_from_docs(false, &docs).unwrap();

{
// Empty result since there is no doc with dates
let elasticsearch_compatible_json = json!(
{
"1": {
"terms": {"field": "text2", "min_doc_count": 0},
"aggs": {
"2":{
"date_histogram": {
"field": "date",
"fixed_interval": "1d",
"extended_bounds": {
"min": "2015-01-01T00:00:00Z",
"max": "2015-01-10T00:00:00Z"
}
}
}
}
}
}
);

let agg_req: Aggregations = serde_json::from_str(
&serde_json::to_string(&elasticsearch_compatible_json).unwrap(),
)
.unwrap();
let res = exec_request_with_query(agg_req, &index, Some(("text", "bbb"))).unwrap();
let expected_res = json!({
"1": {
"buckets": [
{
"2": {
"buckets": [
{ "doc_count": 0, "key": 1420070400000.0, "key_as_string": "2015-01-01T00:00:00Z" },
{ "doc_count": 0, "key": 1420156800000.0, "key_as_string": "2015-01-02T00:00:00Z" },
{ "doc_count": 0, "key": 1420243200000.0, "key_as_string": "2015-01-03T00:00:00Z" },
{ "doc_count": 0, "key": 1420329600000.0, "key_as_string": "2015-01-04T00:00:00Z" },
{ "doc_count": 0, "key": 1420416000000.0, "key_as_string": "2015-01-05T00:00:00Z" },
{ "doc_count": 0, "key": 1420502400000.0, "key_as_string": "2015-01-06T00:00:00Z" },
{ "doc_count": 0, "key": 1420588800000.0, "key_as_string": "2015-01-07T00:00:00Z" },
{ "doc_count": 0, "key": 1420675200000.0, "key_as_string": "2015-01-08T00:00:00Z" },
{ "doc_count": 0, "key": 1420761600000.0, "key_as_string": "2015-01-09T00:00:00Z" },
{ "doc_count": 0, "key": 1420848000000.0, "key_as_string": "2015-01-10T00:00:00Z" }
]
},
"doc_count": 0,
"key": "bbb"
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
});
assert_eq!(res, expected_res);
}
}
}
3 changes: 2 additions & 1 deletion src/aggregation/agg_req_with_accessor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,8 @@ impl AggregationWithAccessor {
field: field_name, ..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
// Only DateTime is supported for DateHistogram
get_ff_reader(reader, field_name, Some(&[ColumnType::DateTime]))?;
add_agg_with_accessor(accessor, column_type, &mut res)?;
}
Terms(TermsAggregation {
Expand Down
8 changes: 5 additions & 3 deletions src/aggregation/bucket/histogram/date_histogram.rs
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,7 @@ impl DateHistogramAggregationReq {
hard_bounds: self.hard_bounds,
extended_bounds: self.extended_bounds,
keyed: self.keyed,
is_normalized_to_ns: false,
})
}

Expand Down Expand Up @@ -243,14 +244,14 @@ fn parse_into_milliseconds(input: &str) -> Result<i64, AggregationError> {
}

#[cfg(test)]
mod tests {
pub mod tests {
use pretty_assertions::assert_eq;

use super::*;
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::tests::exec_request;
use crate::indexer::NoMergePolicy;
use crate::schema::{Schema, FAST};
use crate::schema::{Schema, FAST, STRING};
use crate::Index;

#[test]
Expand Down Expand Up @@ -306,7 +307,8 @@ mod tests {
) -> crate::Result<Index> {
let mut schema_builder = Schema::builder();
schema_builder.add_date_field("date", FAST);
schema_builder.add_text_field("text", FAST);
schema_builder.add_text_field("text", FAST | STRING);
schema_builder.add_text_field("text2", FAST | STRING);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
{
Expand Down
23 changes: 15 additions & 8 deletions src/aggregation/bucket/histogram/histogram.rs
Original file line number Diff line number Diff line change
Expand Up @@ -122,11 +122,14 @@ pub struct HistogramAggregation {
/// Whether to return the buckets as a hash map
#[serde(default)]
pub keyed: bool,
/// Whether the values are normalized to ns for date time values. Defaults to false.
#[serde(default)]
pub is_normalized_to_ns: bool,
}

impl HistogramAggregation {
pub(crate) fn normalize(&mut self, column_type: ColumnType) {
if column_type.is_date_time() {
pub(crate) fn normalize_date_time(&mut self) {
if !self.is_normalized_to_ns {
// values are provided in ms, but the fastfield is in nano seconds
self.interval *= 1_000_000.0;
self.offset = self.offset.map(|off| off * 1_000_000.0);
Expand All @@ -138,6 +141,7 @@ impl HistogramAggregation {
min: bounds.min * 1_000_000.0,
max: bounds.max * 1_000_000.0,
});
self.is_normalized_to_ns = true;
}
}

Expand Down Expand Up @@ -370,7 +374,7 @@ impl SegmentHistogramCollector {

Ok(IntermediateBucketResult::Histogram {
buckets,
column_type: Some(self.column_type),
is_date_agg: self.column_type == ColumnType::DateTime,
})
}

Expand All @@ -381,7 +385,9 @@ impl SegmentHistogramCollector {
accessor_idx: usize,
) -> crate::Result<Self> {
req.validate()?;
req.normalize(field_type);
if field_type == ColumnType::DateTime {
req.normalize_date_time();
}

let sub_aggregation_blueprint = if sub_aggregation.is_empty() {
None
Expand Down Expand Up @@ -439,6 +445,7 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
// memory check upfront
let (_, first_bucket_num, last_bucket_num) =
generate_bucket_pos_with_opt_minmax(histogram_req, min_max);

// It's based on user input, so we need to account for overflows
let added_buckets = ((last_bucket_num.saturating_sub(first_bucket_num)).max(0) as u64)
.saturating_sub(buckets.len() as u64);
Expand Down Expand Up @@ -482,7 +489,7 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
// Convert to BucketEntry
pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
buckets: Vec<IntermediateHistogramBucketEntry>,
column_type: Option<ColumnType>,
is_date_agg: bool,
histogram_req: &HistogramAggregation,
sub_aggregation: &Aggregations,
limits: &AggregationLimits,
Expand All @@ -491,8 +498,8 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
// The request used in the the call to final is not yet be normalized.
// Normalization is changing the precision from milliseconds to nanoseconds.
let mut histogram_req = histogram_req.clone();
if let Some(column_type) = column_type {
histogram_req.normalize(column_type);
if is_date_agg {
histogram_req.normalize_date_time();
}
let mut buckets = if histogram_req.min_doc_count() == 0 {
// With min_doc_count != 0, we may need to add buckets, so that there are no
Expand All @@ -516,7 +523,7 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(

// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
// and normalize from nanoseconds to milliseconds
if column_type == Some(ColumnType::DateTime) {
if is_date_agg {
for bucket in buckets.iter_mut() {
if let crate::aggregation::Key::F64(ref mut val) = bucket.key {
let key_as_string = format_date(*val as i64)?;
Expand Down
22 changes: 14 additions & 8 deletions src/aggregation/intermediate_agg_result.rs
Original file line number Diff line number Diff line change
Expand Up @@ -172,10 +172,16 @@ pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult
Range(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Range(
Default::default(),
)),
Histogram(_) | DateHistogram(_) => {
Histogram(_) => {
IntermediateAggregationResult::Bucket(IntermediateBucketResult::Histogram {
buckets: Vec::new(),
column_type: None,
is_date_agg: false,
})
}
DateHistogram(_) => {
IntermediateAggregationResult::Bucket(IntermediateBucketResult::Histogram {
buckets: Vec::new(),
is_date_agg: true,
})
}
Average(_) => IntermediateAggregationResult::Metric(IntermediateMetricResult::Average(
Expand Down Expand Up @@ -343,8 +349,8 @@ pub enum IntermediateBucketResult {
/// This is the histogram entry for a bucket, which contains a key, count, and optionally
/// sub_aggregations.
Histogram {
/// The column_type of the underlying `Column`
column_type: Option<ColumnType>,
/// The column_type of the underlying `Column` is DateTime
is_date_agg: bool,
/// The buckets
buckets: Vec<IntermediateHistogramBucketEntry>,
},
Expand Down Expand Up @@ -399,7 +405,7 @@ impl IntermediateBucketResult {
Ok(BucketResult::Range { buckets })
}
IntermediateBucketResult::Histogram {
column_type,
is_date_agg,
buckets,
} => {
let histogram_req = &req
Expand All @@ -408,7 +414,7 @@ impl IntermediateBucketResult {
.expect("unexpected aggregation, expected histogram aggregation");
let buckets = intermediate_histogram_buckets_to_final_buckets(
buckets,
column_type,
is_date_agg,
histogram_req,
req.sub_aggregation(),
limits,
Expand Down Expand Up @@ -457,11 +463,11 @@ impl IntermediateBucketResult {
(
IntermediateBucketResult::Histogram {
buckets: buckets_left,
..
is_date_agg: _,
},
IntermediateBucketResult::Histogram {
buckets: buckets_right,
..
is_date_agg: _,
},
) => {
let buckets: Result<Vec<IntermediateHistogramBucketEntry>, TantivyError> =
Expand Down