-
Notifications
You must be signed in to change notification settings - Fork 930
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4087 from nvdbaranec/parquet_large_files
[REVIEW] Support for large parquet files via chunked writes.
- Loading branch information
Showing
13 changed files
with
878 additions
and
90 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
/* | ||
* Copyright (c) 2020, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <benchmark/benchmark.h> | ||
|
||
#include <cudf/column/column.hpp> | ||
#include <cudf/table/table.hpp> | ||
|
||
#include <tests/utilities/base_fixture.hpp> | ||
#include <tests/utilities/column_utilities.hpp> | ||
#include <tests/utilities/column_wrapper.hpp> | ||
|
||
#include <benchmarks/fixture/benchmark_fixture.hpp> | ||
#include <benchmarks/synchronization/synchronization.hpp> | ||
|
||
#include <cudf/io/functions.hpp> | ||
|
||
// to enable, run cmake with -DBUILD_BENCHMARKS=ON | ||
|
||
namespace cudf_io = cudf::experimental::io; | ||
|
||
class ParquetWrite: public cudf::benchmark {}; | ||
class ParquetWriteChunked: public cudf::benchmark {}; | ||
|
||
template<typename T> | ||
std::unique_ptr<cudf::experimental::table> create_random_fixed_table(cudf::size_type num_columns, cudf::size_type num_rows, bool include_validity) | ||
{ | ||
auto valids = cudf::test::make_counting_transform_iterator(0, | ||
[](auto i) { | ||
return i % 2 == 0 ? true : false; | ||
} | ||
); | ||
std::vector<cudf::test::fixed_width_column_wrapper<T>> src_cols(num_columns); | ||
for(int idx=0; idx<num_columns; idx++){ | ||
auto rand_elements = cudf::test::make_counting_transform_iterator(0, [](T i){return rand();}); | ||
if(include_validity){ | ||
src_cols[idx] = cudf::test::fixed_width_column_wrapper<T>(rand_elements, rand_elements + num_rows, valids); | ||
} else { | ||
src_cols[idx] = cudf::test::fixed_width_column_wrapper<T>(rand_elements, rand_elements + num_rows); | ||
} | ||
} | ||
std::vector<std::unique_ptr<cudf::column>> columns(num_columns); | ||
std::transform(src_cols.begin(), src_cols.end(), columns.begin(), [](cudf::test::fixed_width_column_wrapper<T> &in){ | ||
auto ret = in.release(); | ||
ret->has_nulls(); | ||
return ret; | ||
}); | ||
return std::make_unique<cudf::experimental::table>(std::move(columns)); | ||
} | ||
|
||
void PQ_write(benchmark::State& state) | ||
{ | ||
int64_t total_desired_bytes = state.range(0); | ||
cudf::size_type num_cols = state.range(1); | ||
|
||
cudf::size_type el_size = 4; | ||
int64_t num_rows = total_desired_bytes / (num_cols * el_size); | ||
|
||
srand(31337); | ||
auto tbl = create_random_fixed_table<int>(num_cols, num_rows, true); | ||
cudf::table_view view = tbl->view(); | ||
|
||
for(auto _ : state){ | ||
cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 | ||
cudf_io::write_parquet_args args{cudf_io::sink_info(), view}; | ||
cudf_io::write_parquet(args); | ||
} | ||
|
||
state.SetBytesProcessed( | ||
static_cast<int64_t>(state.iterations())*state.range(0)); | ||
} | ||
|
||
void PQ_write_chunked(benchmark::State& state) | ||
{ | ||
int64_t total_desired_bytes = state.range(0); | ||
cudf::size_type num_cols = state.range(1); | ||
cudf::size_type num_tables = state.range(2); | ||
|
||
cudf::size_type el_size = 4; | ||
int64_t num_rows = (total_desired_bytes / (num_cols * el_size)) / num_tables; | ||
|
||
srand(31337); | ||
std::vector<std::unique_ptr<cudf::experimental::table>> tables; | ||
for(cudf::size_type idx=0; idx<num_tables; idx++){ | ||
tables.push_back(create_random_fixed_table<int>(num_cols, num_rows, true)); | ||
} | ||
|
||
for(auto _ : state){ | ||
cuda_event_timer raii(state, true); // flush_l2_cache = true, stream = 0 | ||
cudf_io::write_parquet_chunked_args args{cudf_io::sink_info()}; | ||
|
||
auto state = cudf_io::write_parquet_chunked_begin(args); | ||
std::for_each(tables.begin(), tables.end(), [&state](std::unique_ptr<cudf::experimental::table> const& tbl){ | ||
cudf_io::write_parquet_chunked(*tbl, state); | ||
}); | ||
cudf_io::write_parquet_chunked_end(state); | ||
} | ||
|
||
state.SetBytesProcessed( | ||
static_cast<int64_t>(state.iterations())*state.range(0)); | ||
} | ||
|
||
|
||
#define PWBM_BENCHMARK_DEFINE(name, size, num_columns) \ | ||
BENCHMARK_DEFINE_F(ParquetWrite, name)(::benchmark::State& state) { \ | ||
PQ_write(state); \ | ||
} \ | ||
BENCHMARK_REGISTER_F(ParquetWrite, name)->Args({size, num_columns}) \ | ||
->Unit(benchmark::kMillisecond)->UseManualTime() \ | ||
->Iterations(4) | ||
|
||
PWBM_BENCHMARK_DEFINE(3Gb8Cols, (int64_t)3 * 1024 * 1024 * 1024, 8); | ||
PWBM_BENCHMARK_DEFINE(3Gb1024Cols, (int64_t)3 * 1024 * 1024 * 1024, 1024); | ||
|
||
|
||
#define PWCBM_BENCHMARK_DEFINE(name, size, num_columns, num_chunks) \ | ||
BENCHMARK_DEFINE_F(ParquetWriteChunked, name)(::benchmark::State& state) { \ | ||
PQ_write_chunked(state); \ | ||
} \ | ||
BENCHMARK_REGISTER_F(ParquetWriteChunked, name)->Args({size, num_columns, num_chunks}) \ | ||
->Unit(benchmark::kMillisecond)->UseManualTime() \ | ||
->Iterations(4) | ||
|
||
PWCBM_BENCHMARK_DEFINE(3Gb8Cols64Chunks, (int64_t)3 * 1024 * 1024 * 1024, 8, 64); | ||
PWCBM_BENCHMARK_DEFINE(3Gb1024Cols64Chunks, (int64_t)3 * 1024 * 1024 * 1024, 1024, 64); | ||
|
||
PWCBM_BENCHMARK_DEFINE(3Gb8Cols128Chunks, (int64_t)3 * 1024 * 1024 * 1024, 8, 128); | ||
PWCBM_BENCHMARK_DEFINE(3Gb1024Cols128Chunks, (int64_t)3 * 1024 * 1024 * 1024, 1024, 128); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.