Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Skip dispatching to GPU for unimplemented metrics in UMAP #6224

Merged
16 changes: 16 additions & 0 deletions python/cuml/cuml/manifold/umap.pyx
Original file line number Diff line number Diff line change
@@ -335,6 +335,22 @@ class UMAP(UniversalBase,
_cpu_estimator_import_path = 'umap.UMAP'
embedding_ = CumlArrayDescriptor(order='C')

_hyperparam_interop_translator = {
"metric": {
"sokalsneath": "NotImplemented",
"rogerstanimoto": "NotImplemented",
"sokalmichener": "NotImplemented",
"yule": "NotImplemented",
"ll_dirichlet": "NotImplemented",
"russellrao": "NotImplemented",
"kulsinski": "NotImplemented",
"dice": "NotImplemented",
"wminkowski": "NotImplemented",
"mahalanobis": "NotImplemented",
"haversine": "NotImplemented",
}
}

@device_interop_preparation
def __init__(self, *,
n_neighbors=15,
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#
# Copyright (c) 2024, NVIDIA CORPORATION.
# Copyright (c) 2024-2025, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
@@ -46,10 +46,33 @@ def test_umap_min_dist(manifold_data, min_dist):


@pytest.mark.parametrize(
"metric", ["euclidean", "manhattan", "chebyshev", "cosine"]
"metric",
[
"euclidean",
"manhattan",
"chebyshev",
"cosine",
# These metrics are currently not supported in cuml,
# we test them here to make sure no exception is raised
"sokalsneath",
"rogerstanimoto",
"sokalmichener",
"yule",
"ll_dirichlet",
"russellrao",
"kulsinski",
"dice",
"wminkowski",
"mahalanobis",
"haversine",
],
)
def test_umap_metric(manifold_data, metric):
X = manifold_data
# haversine only works for 2D data
if metric == "haversine":
X = X[:, :2]

umap = UMAP(metric=metric, random_state=42)
X_embedded = umap.fit_transform(X)
trust = trustworthiness(X, X_embedded, n_neighbors=5)