Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[data] [docs] Generalize fix for converting lists to np.ndarray in UDFs #34930

Merged
merged 2 commits into from
May 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions python/ray/data/_internal/arrow_block.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ def from_bytes(cls, data: bytes) -> "ArrowBlockAccessor":

@staticmethod
def numpy_to_block(
batch: Union[np.ndarray, Dict[str, np.ndarray]],
batch: Union[np.ndarray, Dict[str, np.ndarray], Dict[str, list]],
passthrough_arrow_not_implemented_errors: bool = False,
) -> "pyarrow.Table":
import pyarrow as pa
Expand All @@ -163,7 +163,7 @@ def numpy_to_block(
if isinstance(batch, np.ndarray):
batch = {TENSOR_COLUMN_NAME: batch}
elif not isinstance(batch, collections.abc.Mapping) or any(
not isinstance(col, np.ndarray) for col in batch.values()
not isinstance(col, (list, np.ndarray)) for col in batch.values()
):
raise ValueError(
"Batch must be an ndarray or dictionary of ndarrays when converting "
Expand All @@ -172,6 +172,18 @@ def numpy_to_block(
)
new_batch = {}
for col_name, col in batch.items():
if isinstance(col, list):
# Try to convert list values into an numpy array via
# np.array(), so users don't need to manually cast.
# NOTE: we don't cast generic iterables, since types like
# `str` are also Iterable.
try:
col = np.array(col)
except Exception:
raise ValueError(
"Failed to convert column values to numpy array: "
f"({_truncated_repr(col)})."
)
# Use Arrow's native *List types for 1-dimensional ndarrays.
if col.dtype.type is np.object_ or col.ndim > 1:
try:
Expand Down
12 changes: 0 additions & 12 deletions python/ray/data/_internal/planner/map_batches.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,18 +62,6 @@ def validate_batch(batch: Block) -> None:
f"{type(value)}. To fix this issue, convert "
f"the {type(value)} to a `np.ndarray`."
)
if isinstance(value, list):
# Try to convert list values into an numpy array via
# np.array(), so users don't need to manually cast.
# NOTE: we don't cast generic iterables, since types like
# `str` are also Iterable.
try:
batch[key] = np.array(value)
except Exception:
raise ValueError(
"Failed to convert column values to numpy array: "
f"({_truncated_repr(value)})."
)

def process_next_batch(batch: DataBatch) -> Iterator[Block]:
# Apply UDF.
Expand Down
29 changes: 24 additions & 5 deletions python/ray/data/tests/test_strict_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,8 +53,8 @@ def test_strict_map_output(ray_start_regular_shared, enable_strict_mode):

with pytest.raises(StrictModeError):
ds.map_batches(lambda x: np.array([0]), max_retries=0).materialize()
ds.map_batches(lambda x: {"id": np.array([0])}).materialize()
ds.map_batches(lambda x: UserDict({"id": np.array([0])})).materialize()
ds.map_batches(lambda x: {"id": [0]}).materialize()
ds.map_batches(lambda x: UserDict({"id": [0]})).materialize()

with pytest.raises(StrictModeError):
ds.map(lambda x: np.ones(10), max_retries=0).materialize()
Expand All @@ -71,8 +71,8 @@ def test_strict_map_output(ray_start_regular_shared, enable_strict_mode):
ds.map_batches(lambda x: object(), max_retries=0).materialize()
with pytest.raises(ValueError):
ds.map_batches(lambda x: {"x": object()}, max_retries=0).materialize()
ds.map_batches(lambda x: {"x": np.array([object()])}).materialize()
ds.map_batches(lambda x: UserDict({"x": np.array([object()])})).materialize()
ds.map_batches(lambda x: {"x": [object()]}).materialize()
ds.map_batches(lambda x: UserDict({"x": [object()]})).materialize()

with pytest.raises(StrictModeError):
ds.map(lambda x: object(), max_retries=0).materialize()
Expand All @@ -86,7 +86,9 @@ def test_strict_convert_map_output(ray_start_regular_shared, enable_strict_mode)

with pytest.raises(ValueError):
# Strings not converted into array.
ray.data.range(1).map_batches(lambda x: {"id": "string"}).materialize()
ray.data.range(1).map_batches(
lambda x: {"id": "string"}, max_retries=0
).materialize()

class UserObj:
def __eq__(self, other):
Expand All @@ -100,6 +102,23 @@ def __eq__(self, other):
assert ds.take_batch()["id"].tolist() == [0, 1, 2, UserObj()]


def test_strict_convert_map_groups(ray_start_regular_shared, enable_strict_mode):
ds = ray.data.read_csv("example://iris.csv")

def process_group(group):
variety = group["variety"][0]
count = len(group["variety"])

# Test implicit list->array conversion here.
return {
"variety": [variety],
"count": [count],
}

ds = ds.groupby("variety").map_groups(process_group)
ds.show()


def test_strict_default_batch_format(ray_start_regular_shared, enable_strict_mode):
ds = ray.data.range(1)

Expand Down