Skip to content

TF 2.x implementation of MoCo v1 (Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020) and MoCo v2 (Improved Baselines with Momentum Contrastive Learning, 2020).

License

Notifications You must be signed in to change notification settings

renjie-github/MoCo-TF

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MoCo-TF

This is an unofficial implementation of Moco v1 (Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020.) and Moco v2 (Improved Baselines with Momentum Contrastive Learning).

Requirements

  • python >= 3.6
  • tensorflow >= 2.2 (2.2 and 2.3)

Training

For training moco v1,

python main.py \
    --task v1 \
    --weight_decay 0.0001 \
    --brightness 0.4 \
    --contrast 0.4 \
    --saturation 0.4 \
    --hue 0.4 \
    --lr_mode exponential \
    --lr_interval 120,160 \
    --data_path /path/of/your/data \
    --gpus gpu id(s) which will be used

or moco v2,

python main.py \
    --task v2 \
    --weight_decay 0.0001 \
    --mlp \
    --brightness 0.4 \
    --contrast 0.4 \
    --saturation 0.4 \
    --hue 0.1 \
    --lr_mode cosine \
    --data_path /path/of/your/data \
    --gpus gpu id(s) which will be used

Evaluation

For training linear classification,

python main.py \
    --task lincls \
    --batch_size 256 \
    --epochs 100 \
    --lr 30 \
    --lr_mode constant \
    --data_path /path/of/your/data \
    --snapshot /path/of/checkpoint \
    --gpus gpu id(s) which will be used

Results

Our model achieves the following performance on :

Image Classification on ImageNet (IN-1M)

MoCo v1

Model batch Accuracy (paper) Accuracy (ours)
ResNet50 (200 epochs) 256 60.6 -

MoCo v2

Model batch Accuracy (paper) Accuracy (ours)
ResNet50 (200 epochs) 256 67.5 -
ResNet50 (800 epochs) 256 71.1 -

Citation

@Article{he2019moco,
  author  = {Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  title   = {Momentum Contrast for Unsupervised Visual Representation Learning},
  journal = {arXiv preprint arXiv:1911.05722},
  year    = {2019},
}

@Article{chen2020mocov2,
  author  = {Xinlei Chen and Haoqi Fan and Ross Girshick and Kaiming He},
  title   = {Improved Baselines with Momentum Contrastive Learning},
  journal = {arXiv preprint arXiv:2003.04297},
  year    = {2020},
}

About

TF 2.x implementation of MoCo v1 (Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020) and MoCo v2 (Improved Baselines with Momentum Contrastive Learning, 2020).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%