Skip to content

rl-institut/simbev

Repository files navigation

SimBEV

Simulation of electric vehicle charging demand.

Documentation

The full documentation can be found here

Installation

Install using pip

First, clone via SSH using

git clone [email protected]:rl-institut/simbev.git /local/path/to/simbev/

Make sure you have Python >= 3.8 installed, let's create a virtual env:

virtualenv --python=python3.8 simbev
source simbev/bin/activate

Install package with

pip install -e /local/path/to/simbev/

Install using conda

Make sure you have conda installed, e.g. miniconda. Then create the env:

conda env create -n simbev -f /local/path/to/simbev/environment.yml
conda activate simbev

Run simBEV

Get the data

If you want to run SimBEV in the mode using probabilities, a data set is available here

Create a scenario

  • You can use a default scenario or define a custom one in the directory scenarios
  • Run simbev with the desired scenario: python -m simbev path/to/config (defaults to python -m simbev scenarios/default/configs/default.cfg)
  • Results are created in the subdirectory results in the scenario directory

Set parameters for your scenario

Select regio-type for the mobility characteristics:

  • regiotypes: Ländliche Regionen LR_Klein - Kleinstädtischer, dörflicher Raum LR_Mitte - Mittelstädte, städtischer Raum LR_Zentr - Zentrale Stadt Stadtregionen SR_Klein - Kleinstädtischer, dörflicher Raum SR_Mitte - Mittelstädte, städtischer Raum SR_Gross - Regiopolen, Großstädte SR_Metro - Metropole

Change vehicle configuration

  • battery capacity
  • charging power (slow and fast)
  • consumption

Decide how many vehicles should be simulated

  • note: more than 5000 vehicles of one type in one region is not necessary, if you want to analyze more, scale it accordingly

License

see LICENSE

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages