Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dqn vs mdqn #264

Merged
merged 7 commits into from
Dec 20, 2022
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 95 additions & 0 deletions long_tests/torch_agent/ltest_dqn_vs_mdqn_acrobot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
from rlberry.envs import gym_make
from rlberry.agents.torch import DQNAgent
from rlberry.agents.torch import MunchausenDQNAgent as MDQNAgent
from rlberry.manager import AgentManager, evaluate_agents, plot_writer_data
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns


def test_dqn_vs_mdqn_acro():

env_ctor = gym_make
env_kwargs = dict(id="Acrobot-v1")

dqn_init_kwargs = dict(
gamma=0.99,
batch_size=32,
chunk_size=1,
lambda_=0,
target_update_parameter=0.005,
learning_rate=1e-3,
epsilon_init=1.0,
epsilon_final=0.1,
epsilon_decay_interval=20_000,
train_interval=10,
gradient_steps=-1,
max_replay_size=200_000,
learning_starts=5_000,
)

mdqn_init_kwargs = dict(
gamma=0.99,
batch_size=32,
chunk_size=1,
lambda_=0,
target_update_parameter=0.005,
learning_rate=1e-3,
epsilon_init=1.0,
epsilon_final=0.1,
epsilon_decay_interval=20_000,
train_interval=10,
gradient_steps=-1,
max_replay_size=200_000,
learning_starts=5_000,
)
dqnagent = AgentManager(
DQNAgent,
(env_ctor, env_kwargs),
init_kwargs=dqn_init_kwargs,
fit_budget=5e4,
eval_kwargs=dict(eval_horizon=500),
n_fit=4,
parallelization="process",
mp_context="fork",
)

mdqnagent = AgentManager(
MDQNAgent,
(env_ctor, env_kwargs),
init_kwargs=mdqn_init_kwargs,
fit_budget=5e4,
eval_kwargs=dict(eval_horizon=500),
n_fit=4,
parallelization="process",
mp_context="fork",
)

mdqnagent.fit()
dqnagent.fit()
plot_writer_data(
[mdqnagent, dqnagent],
tag="episode_rewards",
# ylabel_="Cumulative Reward",
title=" Rewards during training",
show=False,
savefig_fname="mdqn_acro_rewards.pdf",
)
plt.clf()
plot_writer_data(
[mdqnagent, dqnagent],
tag="losses/q_loss",
# ylabel_="Cumulative Reward",
title="q_loss",
show=False,
savefig_fname="mdqn_acro_loss.pdf",
)
plt.clf()
evaluation = evaluate_agents([mdqnagent, dqnagent], n_simulations=100, show=False)
with sns.axes_style("whitegrid"):
ax = sns.boxplot(data=evaluation)
ax.set_xlabel("agent")
ax.set_ylabel("Cumulative Reward")
plt.title("Evals")
plt.gcf().savefig("mdqn_acro_eval.pdf")
plt.clf()
1 change: 1 addition & 0 deletions rlberry/agents/torch/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Torch agents (in alphabetical order)
from .a2c import A2CAgent
from .dqn import DQNAgent
from .dqn import MunchausenDQNAgent
from .ppo import PPOAgent
from .reinforce import REINFORCEAgent