Skip to content

rohboz/mnist_test_s202825

Repository files navigation

MNIST 02476

To fulfill the dependencies run:
-- pip install -r requirements.txt
To process data raw data run:
-- python src\data\make_dataset.py data\raw\corruptmnist data\processed
Or access data through from dvc:
-- dvc pull
To train model and generate training run png run:
-- python src\models\train_model.py
To use trained model for prediction run:
-- python src\models\predict_model.py models\trained_models\model.pt data\processed\testset.pt
Build dockerimage to run training-pipeline:
-- docker build -f trainer.dockerfile . -t trainer:latest --no-cache \


Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
├── .dvc
│   ├── plots          <- Data from third party sources.
│   │   └── ...
│   ├── .gitignore
│   └── config
├── .dvcignore         <- Ignore file for dvc
├── data.dvc           <- Configuration details for dvc
│
├── tests
│   ├── test_data.py   <- Test data
│   └── test_model.py  <- Test model
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
├── .gitignore         <- Ignore file for git
├── test_environment.py<- Test for environment setup.
├── Dockerfile         <- dockerfile to be activated by gcp trigger at git push
├── cloudbuild.yaml    <- Build file for Dockerfile in gcp
├── trainer.dockerfile <- Local dockerfile not cloud
├── .flake8            <- Configuration file for flake8
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published