Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Speeds up ghcn_splitvars #355

Merged
merged 9 commits into from
Jun 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,8 @@ Imports:
tibble,
isdparser (>= 0.2.0),
geonames,
hoardr (>= 0.5.2)
hoardr (>= 0.5.2),
data.table
Suggests:
roxygen2 (>= 7.1.0),
testthat,
Expand Down
84 changes: 29 additions & 55 deletions R/ghcnd.R
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ ghcnd <- function(stationid, refresh = FALSE, ...) {
} else {
cache_mssg(csvpath)
res <- read.csv(csvpath, stringsAsFactors = FALSE,
colClasses = ghcnd_col_classes)
colClasses = ghcnd_col_classes)
}
fi <- file.info(csvpath)
res <- remove_na_row(res) # remove trailing row of NA's
Expand Down Expand Up @@ -122,62 +122,34 @@ ghcnd_splitvars <- function(x){
if (!inherits(x, "data.frame")) stop("input must be a data.frame", call. = FALSE)
if (!"id" %in% names(x)) stop("input not of correct format", call. = FALSE)
x <- x[!is.na(x$id), ]
out <- lapply(as.character(unique(x$element)), function(y){
ydat <- x[ x$element == y, ]

dd <- ydat %>%
dplyr::select(-dplyr::contains("FLAG")) %>%
tidyr::gather(var, value, -id, -year, -month, -element) %>%
dplyr::mutate(
day = strex(var),
date = as.Date(sprintf("%s-%s-%s", year, month, day), "%Y-%m-%d")) %>%
dplyr::filter(!is.na(date)) %>%
dplyr::select(
-element,
-var,
-year,
-month,
-day)
dd <- stats::setNames(dd, c("id", tolower(y), "date"))

mflag <- ydat %>%
dplyr::select(-dplyr::contains("VALUE"), -dplyr::contains("QFLAG"),
-dplyr::contains("SFLAG")) %>%
tidyr::gather(var, value, -id, -year, -month, -element) %>%
dplyr::mutate(
day = strex(var),
date = as.Date(sprintf("%s-%s-%s", year, month, day), "%Y-%m-%d")) %>%
dplyr::filter(!is.na(date)) %>%
dplyr::select(value) %>%
dplyr::rename(mflag = value)

qflag <- ydat %>%
dplyr::select(-dplyr::contains("VALUE"), -dplyr::contains("MFLAG"),
-dplyr::contains("SFLAG")) %>%
tidyr::gather(var, value, -id, -year, -month, -element) %>%
dplyr::mutate(
day = strex(var),
date = as.Date(sprintf("%s-%s-%s", year, month, day), "%Y-%m-%d")) %>%
dplyr::filter(!is.na(date)) %>%
dplyr::select(value) %>%
dplyr::rename(qflag = value)

sflag <- ydat %>%
dplyr::select(-dplyr::contains("VALUE"), -dplyr::contains("QFLAG"),
-dplyr::contains("MFLAG")) %>%
tidyr::gather(var, value, -id, -year, -month, -element) %>%
dplyr::mutate(
day = strex(var),
date = as.Date(sprintf("%s-%s-%s", year, month, day), "%Y-%m-%d")) %>%
dplyr::filter(!is.na(date)) %>%
dplyr::select(value) %>%
dplyr::rename(sflag = value)

tibble::as_tibble(cbind(dd, mflag, qflag, sflag))
patterns <- NULL
mflag <- NULL
qflag <- NULL
sflag <- NULL

out <- data.table::melt(data.table::as.data.table(x), id.vars = c("id", "year", "month", "element"),
variable.name = "day",
measure.vars = patterns(value = "VALUE",
mflag = "MFLAG",
qflag = "QFLAG",
sflag = "SFLAG")) %>%
dplyr::as_tibble() %>%
dplyr::mutate(date = as.Date(sprintf("%s-%s-%s", year, month, day), "%Y-%m-%d")) %>%
dplyr::filter(!is.na(date)) %>%
dplyr::select(-day, -month, -year) %>%
dplyr::mutate(element = tolower(element)) %>%
dplyr::select(id, value, date, mflag, qflag, sflag, element)

out <- split(out, out$element, drop = TRUE)
out <- lapply(out, function(y) {
colnames(y)[colnames(y) == "value"] <- unique(y$element)
dplyr::select(y, -element)
})
stats::setNames(out, tolower(unique(x$element)))

return(out[tolower(unique(x$element))])
}


## helpers -------
ghcnd_col_classes <- c(
"character", "integer", "integer", "character",
Expand All @@ -201,7 +173,7 @@ ghcnd_GET <- function(stationid, ...){
tt <- res$parse("UTF-8")
vars <- c("id","year","month","element",
do.call("c",
lapply(1:31, function(x) paste0(c("VALUE","MFLAG","QFLAG","SFLAG"), x))))
lapply(1:31, function(x) paste0(c("VALUE","MFLAG","QFLAG","SFLAG"), x))))
df <- read.fwf(textConnection(tt), c(11,4,2,4,rep(c(5,1,1,1), 31)),
na.strings = "-9999")
df[] <- Map(function(a, b) {
Expand Down Expand Up @@ -229,3 +201,5 @@ str_extract_ <- function(string, pattern) {
str_extract_all_ <- function(string, pattern) {
regmatches(string, gregexpr(pattern, string))
}

.datatable.aware = TRUE
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what does .datatable.aware do?