-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
337 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
Package: mabc | ||
Type: mabc | ||
Title: Maciel's Artificial Bee Colony heuristics algorithm | ||
Version: 0.1 | ||
Date: 2017-01-05 | ||
Author: Rui Maciel | ||
Maintainer: Rui Maciel <[email protected]> | ||
Description: Implementation of the Artificial Bee Colony heuristics algorithm | ||
License: GPLv3 | ||
Depends: methods |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
exportMethods( | ||
"run" | ||
) | ||
exportClasses( | ||
"MABC" | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,271 @@ | ||
# Maciel's implementation of artificial bee colony algorithm for optimization problems with a binary search space | ||
# | ||
# The algorithm is implemented as a S4 class, it's developed for minimization problems, and doesn't apply a cross-over operator | ||
|
||
library("parallel") | ||
|
||
MABC <- setClass( | ||
Class="MABC", | ||
|
||
slots = list( | ||
exploitation_limit = "numeric", | ||
n_iteration = "numeric", | ||
n_dimensional_input_space = "numeric" | ||
), | ||
|
||
prototype=list( | ||
exploitation_limit=10, | ||
n_iteration = 0, | ||
n_dimensional_input_space = 0 # must be set | ||
) | ||
) | ||
|
||
|
||
setGeneric( name="initialize", | ||
def <- function(theObject, n_bees, n_dimensional) { | ||
standardGeneric("initialize") | ||
} | ||
) | ||
|
||
setMethod(f="initialize", | ||
signature = "MABC", | ||
definition = function(theObject, n_bees, n_dimensional) | ||
{ | ||
bees <- lapply(seq(1,n_bees), function(i) generate_random_bee(theObject, n_dimensional) ) | ||
|
||
theObject@n_iteration <- 1; | ||
|
||
return(bees) | ||
} | ||
) | ||
|
||
|
||
setGeneric(name="generate_random_bee", | ||
def <- function(theObject, n_dimensional) { | ||
standardGeneric("generate_random_bee") | ||
} | ||
) | ||
|
||
|
||
setMethod(f="generate_random_bee", | ||
signature="MABC", | ||
definition = function(theObject, n_dimensional) | ||
{ | ||
|
||
bee <- list( | ||
iteration = theObject@n_iteration, | ||
x = sample(c(TRUE,FALSE), n_dimensional, replace = TRUE), | ||
fitness_value = Inf | ||
) | ||
|
||
return(bee) | ||
} | ||
) | ||
|
||
|
||
setGeneric(name="mutate", | ||
def <- function(theObject, bee) { | ||
standardGeneric("mutate") | ||
} | ||
) | ||
|
||
|
||
setMethod(f="mutate", | ||
signature = "MABC", | ||
definition <- function(theObject, bee) { | ||
# applies a bit-flip on a random bit | ||
i = sample(1:length(bee$x),1) | ||
|
||
bee$x[[i]] <- !bee$x[[i]] | ||
|
||
return(bee) | ||
} | ||
) | ||
|
||
|
||
setGeneric(name="employed_bees_stage", | ||
def <- function(theObject, bees, objective_function, cl) { | ||
standardGeneric("employed_bees_stage") | ||
} | ||
) | ||
|
||
|
||
setMethod(f="employed_bees_stage", | ||
signature = "MABC", | ||
definition <- function(theObject, bees, objective_function, cl) { | ||
# apply mutator operator to all bees | ||
|
||
mutated_bees <- lapply(bees, function(bee) mutate(theObject,bee)) | ||
mutated_bees <- evaluate(theObject, objective_function, mutated_bees, cl) | ||
|
||
# check which mutated bee improves | ||
for(i in 1:length(mutated_bees)) { | ||
if(bees[[i]]$fitness_value > mutated_bees[[i]]$fitness_value) { | ||
bees[[i]] <- mutated_bees[[i]] | ||
bees[[i]]$iteration <- theObject@n_iteration; | ||
} | ||
} | ||
|
||
return(bees) | ||
} | ||
) | ||
|
||
|
||
setGeneric(name="onlooker_bees_stage", | ||
def <- function(theObject, bees, objective_function, n_employed_bees, cl) { | ||
standardGeneric("onlooker_bees_stage") | ||
} | ||
) | ||
|
||
|
||
setMethod(f="onlooker_bees_stage", | ||
signature = "MABC", | ||
definition <- function(theObject, bees, objective_function, n_employed_bees, cl) { | ||
# apply selection operator | ||
|
||
fitness_score_calculation <- function(b) { | ||
f <- b$fitness_value | ||
if( f > 0) { | ||
return( 1/(1+f)) | ||
}else { | ||
return(1+abs(f)) | ||
} | ||
} | ||
|
||
fitness_score <- sapply(bees, fitness_score_calculation) | ||
|
||
for(i in 2:length(fitness_score)) { | ||
fitness_score[i] = fitness_score[i] + fitness_score[i-1]; | ||
} | ||
fitness_score = fitness_score/max(fitness_score) | ||
|
||
selected_idx = findInterval( runif(n_employed_bees), fitness_score)+1 | ||
|
||
selected_bees = bees[selected_idx] | ||
|
||
# apply mutator operator | ||
mutated_bees <- lapply(selected_bees, function(bee) mutate(theObject, bee)) | ||
mutated_bees <- evaluate(theObject, objective_function, mutated_bees, cl) | ||
|
||
# update current bees | ||
for(i in selected_idx) { | ||
original_idx = selected_idx[i] | ||
|
||
#updates the old record if there is an update | ||
if( bees[[original_idx]]$fitness_value > mutated_bees[[i]]$fitness_value) { | ||
bees[[original_idx]] <- mutated_bees[[i]] | ||
bees[[original_idx]]$iteration <- theObject@n_iteration | ||
} | ||
} | ||
|
||
return(bees) | ||
} | ||
) | ||
|
||
|
||
setGeneric(name="scout_bees_stage", | ||
def <- function(theObject, bees, objective_function, cl) { | ||
standardGeneric("scout_bees_stage") | ||
} | ||
) | ||
|
||
|
||
setMethod(f="scout_bees_stage", | ||
signature = "MABC", | ||
definition <- function(theObject, bees, objective_function, cl) { | ||
exhausted <- sapply(bees, function(b) theObject@n_iteration-b$iteration > theObject@exploitation_limit) | ||
|
||
if( any(exhausted)) { | ||
exhausted_bees <- bees[exhausted] | ||
replacement_bees <- lapply(exhausted_bees, function(b) generate_random_bee(theObject,length(b$x))) | ||
replacement_bees <- evaluate(theObject, objective_function, replacement_bees, cl) | ||
bees[exhausted] <- replacement_bees | ||
} | ||
|
||
return(bees) | ||
} | ||
) | ||
|
||
|
||
setGeneric( name="run", | ||
def <- function(theObject, objective_function, n_employed_bees, n_max_iterations, cl = NULL) { | ||
standardGeneric("run") | ||
} | ||
) | ||
|
||
setMethod(f="run", | ||
signature = "MABC", | ||
definition = function(theObject, objective_function, n_employed_bees, n_max_iterations, cl = NULL) | ||
{ | ||
theObject@n_iteration <- 0 | ||
n_dimensional <- theObject@n_dimensional_input_space | ||
|
||
n_initial_bees <- n_employed_bees; | ||
|
||
employed_bees_list <- initialize(theObject, n_initial_bees, n_dimensional) | ||
employed_bees_list <- evaluate(theObject, objective_function, employed_bees_list, cl) | ||
|
||
best_bees = list() | ||
|
||
|
||
while(theObject@n_iteration < n_max_iterations) { | ||
|
||
#TODO apply artificial bee colony algorithm | ||
bees <- employed_bees_stage(theObject, employed_bees_list, objective_function, cl) | ||
|
||
bees <- onlooker_bees_stage(theObject, bees, objective_function, n_employed_bees, cl) | ||
|
||
# store best point from each iteration | ||
best_idx = which.min( sapply(bees, function(b) b$fitness_value)) | ||
best_bees[[length(best_bees)+1]] = bees[[best_idx]] | ||
|
||
bees <- scout_bees_stage(theObject, bees, objective_function, cl) | ||
|
||
employed_bees_list <- bees | ||
|
||
# update iteration variables | ||
theObject@n_iteration <- theObject@n_iteration + 1 | ||
} | ||
|
||
# produce output data structure | ||
best_idx = which.min( lapply(best_bees, function(b) b$fitness_value)) | ||
best_bee = best_bees[[best_idx]] | ||
|
||
output = list( | ||
best_per_iteration = best_bees, | ||
absolute_best = best_bee | ||
) | ||
|
||
return(output) | ||
} | ||
) | ||
|
||
|
||
setGeneric( name="evaluate", | ||
def <- function(theObject, f, bee_list, cl = NULL) { | ||
standardGeneric("evaluate") | ||
} | ||
) | ||
|
||
setMethod(f="evaluate", | ||
signature = "MABC", | ||
definition = function(theObject, f, bee_list, cl = NULL) | ||
{ | ||
if (is.null(cl)) | ||
{ | ||
fitness_value <- lapply(bee_list, function(b) f(b$x)) | ||
} | ||
else | ||
{ | ||
fitness_value <- parLapply(cl, bee_list, function(b) f(b$x)) | ||
} | ||
|
||
for(i in 1:length(bee_list)) { | ||
bee_list[[i]]$fitness_value <- fitness_value[[i]] | ||
} | ||
|
||
return(bee_list) | ||
} | ||
) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
basic_hamming.R Demonstrates how to employ MABC to find solutions to the Hamming distance to zero problem. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
|
||
# Example: | ||
|
||
library(MABC) | ||
|
||
mabc <- MABC(n_dimensional_input_space = 10) | ||
|
||
f <- function(x) { | ||
return(sum(x)) | ||
} | ||
|
||
results <- run(mabc, f, n_employed_bees = 8, n_max_iterations = 100) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
\name{mabc} | ||
\alias{mabc} | ||
\docType{package} | ||
\title{ | ||
Maciel's Artificial Bee Colony algorithm implementation | ||
} | ||
\description{ | ||
%%\packageDescription{mabc} | ||
Implementation of the Artificial Bee Colony algorithm. | ||
} | ||
\details{ | ||
The DESCRIPTION file: | ||
\packageDESCRIPTION{mabc} | ||
\packageIndices{mabc} | ||
~~ An overview of how to use the package, including the most important functions ~~ | ||
} | ||
\author{ | ||
\packageAuthor{mabc} | ||
Maintainer: \packageMaintainer{mabc} | ||
} | ||
\references{ | ||
~~ Literature or other references for background information ~~ | ||
} | ||
~~ Optionally other standard keywords, one per line, from file KEYWORDS in the R documentation directory ~~ | ||
\keyword{ package } | ||
\seealso{ | ||
~~ Optional links to other man pages, e.g. ~~ | ||
~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~ | ||
} | ||
\examples{ | ||
~~ simple examples of the most important functions ~~ | ||
} |