Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor ops.rs #42523

Merged
merged 11 commits into from
Jun 14, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3,021 changes: 0 additions & 3,021 deletions src/libcore/ops.rs

This file was deleted.

873 changes: 873 additions & 0 deletions src/libcore/ops/arith.rs

Large diffs are not rendered by default.

839 changes: 839 additions & 0 deletions src/libcore/ops/bit.rs

Large diffs are not rendered by default.

119 changes: 119 additions & 0 deletions src/libcore/ops/deref.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/// The `Deref` trait is used to specify the functionality of dereferencing
/// operations, like `*v`.
///
/// `Deref` also enables ['`Deref` coercions'][coercions].
///
/// [coercions]: ../../book/deref-coercions.html
///
/// # Examples
///
/// A struct with a single field which is accessible via dereferencing the
/// struct.
///
/// ```
/// use std::ops::Deref;
///
/// struct DerefExample<T> {
/// value: T
/// }
///
/// impl<T> Deref for DerefExample<T> {
/// type Target = T;
///
/// fn deref(&self) -> &T {
/// &self.value
/// }
/// }
///
/// fn main() {
/// let x = DerefExample { value: 'a' };
/// assert_eq!('a', *x);
/// }
/// ```
#[lang = "deref"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Deref {
/// The resulting type after dereferencing
#[stable(feature = "rust1", since = "1.0.0")]
type Target: ?Sized;

/// The method called to dereference a value
#[stable(feature = "rust1", since = "1.0.0")]
fn deref(&self) -> &Self::Target;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> Deref for &'a T {
type Target = T;

fn deref(&self) -> &T { *self }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> Deref for &'a mut T {
type Target = T;

fn deref(&self) -> &T { *self }
}

/// The `DerefMut` trait is used to specify the functionality of dereferencing
/// mutably like `*v = 1;`
///
/// `DerefMut` also enables ['`Deref` coercions'][coercions].
///
/// [coercions]: ../../book/deref-coercions.html
///
/// # Examples
///
/// A struct with a single field which is modifiable via dereferencing the
/// struct.
///
/// ```
/// use std::ops::{Deref, DerefMut};
///
/// struct DerefMutExample<T> {
/// value: T
/// }
///
/// impl<T> Deref for DerefMutExample<T> {
/// type Target = T;
///
/// fn deref(&self) -> &T {
/// &self.value
/// }
/// }
///
/// impl<T> DerefMut for DerefMutExample<T> {
/// fn deref_mut(&mut self) -> &mut T {
/// &mut self.value
/// }
/// }
///
/// fn main() {
/// let mut x = DerefMutExample { value: 'a' };
/// *x = 'b';
/// assert_eq!('b', *x);
/// }
/// ```
#[lang = "deref_mut"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait DerefMut: Deref {
/// The method called to mutably dereference a value
#[stable(feature = "rust1", since = "1.0.0")]
fn deref_mut(&mut self) -> &mut Self::Target;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> DerefMut for &'a mut T {
fn deref_mut(&mut self) -> &mut T { *self }
}
99 changes: 99 additions & 0 deletions src/libcore/ops/drop.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/// The `Drop` trait is used to run some code when a value goes out of scope.
/// This is sometimes called a 'destructor'.
///
/// When a value goes out of scope, if it implements this trait, it will have
/// its `drop` method called. Then any fields the value contains will also
/// be dropped recursively.
///
/// Because of the recursive dropping, you do not need to implement this trait
/// unless your type needs its own destructor logic.
///
/// # Examples
///
/// A trivial implementation of `Drop`. The `drop` method is called when `_x`
/// goes out of scope, and therefore `main` prints `Dropping!`.
///
/// ```
/// struct HasDrop;
///
/// impl Drop for HasDrop {
/// fn drop(&mut self) {
/// println!("Dropping!");
/// }
/// }
///
/// fn main() {
/// let _x = HasDrop;
/// }
/// ```
///
/// Showing the recursive nature of `Drop`. When `outer` goes out of scope, the
/// `drop` method will be called first for `Outer`, then for `Inner`. Therefore
/// `main` prints `Dropping Outer!` and then `Dropping Inner!`.
///
/// ```
/// struct Inner;
/// struct Outer(Inner);
///
/// impl Drop for Inner {
/// fn drop(&mut self) {
/// println!("Dropping Inner!");
/// }
/// }
///
/// impl Drop for Outer {
/// fn drop(&mut self) {
/// println!("Dropping Outer!");
/// }
/// }
///
/// fn main() {
/// let _x = Outer(Inner);
/// }
/// ```
///
/// Because variables are dropped in the reverse order they are declared,
/// `main` will print `Declared second!` and then `Declared first!`.
///
/// ```
/// struct PrintOnDrop(&'static str);
///
/// fn main() {
/// let _first = PrintOnDrop("Declared first!");
/// let _second = PrintOnDrop("Declared second!");
/// }
/// ```
#[lang = "drop"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Drop {
/// A method called when the value goes out of scope.
///
/// When this method has been called, `self` has not yet been deallocated.
/// If it were, `self` would be a dangling reference.
///
/// After this function is over, the memory of `self` will be deallocated.
///
/// This function cannot be called explicitly. This is compiler error
/// [E0040]. However, the [`std::mem::drop`] function in the prelude can be
/// used to call the argument's `Drop` implementation.
///
/// [E0040]: ../../error-index.html#E0040
/// [`std::mem::drop`]: ../../std/mem/fn.drop.html
///
/// # Panics
///
/// Given that a `panic!` will call `drop()` as it unwinds, any `panic!` in
/// a `drop()` implementation will likely abort.
#[stable(feature = "rust1", since = "1.0.0")]
fn drop(&mut self);
}
Loading