Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Only mark projection as ambiguous if GAT substs are constrained #93892

Merged
merged 2 commits into from
Feb 19, 2022

Conversation

compiler-errors
Copy link
Member

A slightly more targeted version of #92917, where we only give up with ambiguity if we infer something about the GATs substs when probing for a projection candidate.

fixes #93874
also note (but like the previous PR, does not fix) #91762

r? @jackh726
cc @nikomatsakis who reviewed #92917

@rustbot rustbot added the T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. label Feb 11, 2022
@rust-highfive rust-highfive added the S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. label Feb 11, 2022
if is_match {
let generics = self.tcx().generics_of(obligation.predicate.item_def_id);
if !generics.params.is_empty() {
// If any of the obligation's predicate substs shallow-resolve to
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should I leave a note here saying that this is still kinda a hack?

@jackh726
Copy link
Member

This is probably right, but need to take another look (and want Niko's thoughts)

@MingweiSamuel
Copy link
Contributor

MingweiSamuel commented Feb 12, 2022

I tested this patch and I confirmed it fixed #93874 in our project (has decently complex but not pathological use of GATs)

pub(super) fn match_projection_projections(
&mut self,
obligation: &ProjectionTyObligation<'tcx>,
env_predicate: PolyProjectionPredicate<'tcx>,
potentially_unnormalized_candidates: bool,
) -> bool {
) -> Option<bool> {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's return an enum here

@jackh726
Copy link
Member

@bors r=jackh726,nikomatsakis

We talked about this during the GATs meeting

@bors
Copy link
Contributor

bors commented Feb 14, 2022

📌 Commit 6d52ef088b2a4bee4d7cbb9f1fc3c35c1167eabb has been approved by jackh726,nikomatsakis

@bors bors added S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. and removed S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. labels Feb 14, 2022
@@ -1508,12 +1508,15 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
})
}

/// Return Some(true) if the obligation's predicate type applies to the env_predicate, and
/// Some(false) if it does not. Returns None in the case that the projection type is a GAT,
/// and applying this env_predicate constrains any of the obligation's GAT substitutions.
pub(super) fn match_projection_projections(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comment is slightly outdated now that the return type has changed to an enum

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good catch.

@compiler-errors
Copy link
Member Author

compiler-errors commented Feb 15, 2022

@jackh726 this might need a new r+, pushed a new commit to address @marmeladema's comment on the outdated function doc comment and I don't have bors powers.

@marmeladema
Copy link
Contributor

marmeladema commented Feb 15, 2022

@compiler-errors I think you updated stdarch in your recent commit but I don't think it was on purpose? Maybe it's just a GitHub trick though

EDIT: miri too

@compiler-errors
Copy link
Member Author

compiler-errors commented Feb 15, 2022

@compiler-errors I think you updated stdarch in your recent commit but I don't think it was on purpose? Maybe it's just a GitHub trick though

No, I just don't know how to use git. Fixed it like a second after you commented.

@@ -1180,7 +1171,7 @@ fn assemble_candidates_from_trait_def<'cx, 'tcx>(
ProjectionCandidate::TraitDef,
bounds.iter(),
true,
)
);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this diff new?

Copy link
Member Author

@compiler-errors compiler-errors Feb 15, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

function returns () and the rest have semicolons, but i'll double check

@jackh726
Copy link
Member

saw a nit

r=me with or without

@bors delegate+

@bors
Copy link
Contributor

bors commented Feb 15, 2022

✌️ @compiler-errors can now approve this pull request

@compiler-errors
Copy link
Member Author

@bors r=jackh726,nikomatsakis

@bors
Copy link
Contributor

bors commented Feb 15, 2022

📌 Commit 879e4f8 has been approved by jackh726,nikomatsakis

bors added a commit to rust-lang-ci/rust that referenced this pull request Feb 19, 2022
…askrgr

Rollup of 10 pull requests

Successful merges:

 - rust-lang#89892 (Suggest `impl Trait` return type when incorrectly using a generic return type)
 - rust-lang#91675 (Add MemTagSanitizer Support)
 - rust-lang#92806 (Add more information to `impl Trait` error)
 - rust-lang#93497 (Pass `--test` flag through rustdoc to rustc so `#[test]` functions can be scraped)
 - rust-lang#93814 (mips64-openwrt-linux-musl: correct soft-foat)
 - rust-lang#93847 (kmc-solid: Use the filesystem thread-safety wrapper)
 - rust-lang#93877 (asm: Allow the use of r8-r14 as clobbers on Thumb1)
 - rust-lang#93892 (Only mark projection as ambiguous if GAT substs are constrained)
 - rust-lang#93915 (Implement --check-cfg option (RFC 3013), take 2)
 - rust-lang#93953 (Add the `known-bug` test directive, use it, and do some cleanup)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
@bors bors merged commit 1e2f63d into rust-lang:master Feb 19, 2022
@rustbot rustbot added this to the 1.60.0 milestone Feb 19, 2022
MingweiSamuel added a commit to MingweiSamuel/hydroflow that referenced this pull request Feb 23, 2022
@compiler-errors compiler-errors deleted the issue-92917 branch April 7, 2022 04:32
@jackh726 jackh726 mentioned this pull request May 4, 2022
5 tasks
bors added a commit to rust-lang-ci/rust that referenced this pull request Sep 13, 2022
…er-errors

Stabilize generic associated types

Closes rust-lang#44265

r? `@nikomatsakis`

# ⚡ Status of the discussion ⚡

* [x] There have been several serious concerns raised, [summarized here](rust-lang#96709 (comment)).
* [x] There has also been a [deep-dive comment](rust-lang#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue.
* [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md).
* [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html).
* [x] [FCP has been proposed](rust-lang#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members.

# Stabilization proposal

This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step.

Tracking issue: rust-lang#44265
Initiative: https://rust-lang.github.io/generic-associated-types-initiative/
RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md
Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable).

## Motivation

There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it).

There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features.

This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases.

## What is stabilized

The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not.

```rust
trait ATraitWithGATs {
    type Assoc<'a, T> where T: 'a;
}

trait ATraitWithoutGATs<'a, T> {
    type Assoc where T: 'a;
}
```

When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation.

```rust
struct X;
struct Y;

impl ATraitWithGATs for X {
    type Assoc<'a, T> = &'a T
      where T: 'a;
}
impl ATraitWithGATs for Y {
    type Assoc<'a, T>
      where T: 'a
    = &'a T;
}
```

To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds:

```rust
fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T>
  where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> {
    ...
}
```

GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type.

To take a relatively simple example:

```rust
trait Iterable {
    type Item<'a>;
    type Iterator<'a>: Iterator<Item = Self::Item<'a>>;

    fn iter<'x>(&'x self) -> Self::Iterator<'x>;
    //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator`
    //  `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too
}
```

A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html).

## What isn't stabilized/implemented

### Universal type/const quantification

Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`.

Here is an example where this is needed:

```rust
trait Foo {}

trait Trait {
    type Assoc<F: Foo>;
}

trait Trait2: Sized {
    fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T);
}
```

In the above example, the *caller* must specify `F`, which is likely not what is desired.

### Object-safe GATs

Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed:

```rust
trait Trait {
    type Assoc<'a>;
}

fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {}
         //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed

let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>;
          //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed
```

### Higher-kinded types

You cannot write currently (and there are no current plans to implement this):

```rust
struct Struct<'a> {}

fn foo(s: for<'a> Struct<'a>) {}
```

## Tests

There are many tests covering GATs that can be found in  `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns.

- `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs
- `./collections-project-default.rs`: Interaction with associated type defaults
- `./collections.rs`: The `Collection` pattern
- `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters
- `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion
- `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same
- `./elided-in-expr-position.rs`: Disallow lifetime elision in return position
- `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path
- `./gat-in-trait-path.rs`: Base trait path case
- `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters
- `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path
- `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl
- `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked
- `./issue-76826.rs`: `Windows` pattern
- `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics
- `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough
- `./issue-87258_a.rs`: Unconstrained opaque type with TAITs
- `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds
- `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl
- `./issue-87429-specialization.rs`: Check that bounds hold under specialization
- `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function
- `./issue-90014.rs`: Lifetime bounds are checked with TAITs
- `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs
- `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified.
- `./issue-95305.rs`: Disallow lifetime elision in trait paths
- `./iterable.rs`: `Iterable` pattern
- `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error
- `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable)
- `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait
- `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait
- `./pointer_family.rs`: `PointerFamily` pattern
- `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds
- `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait
- `./shadowing.rs`: Don't allow lifetime shadowing in params
- `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern
- `./trait-objects.rs`: Disallow trait objects for traits with GATs
- `./variance_constraints.rs`: Require that GAT substs be invariant

## Remaining bugs and open issues

A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types

There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`.

Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.)

Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound.
- rust-lang#85533
- rust-lang#87803

In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types.
- rust-lang#87755
- rust-lang#87758

Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other.
- rust-lang#87831
- rust-lang#90573

We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes.
- rust-lang#88382

When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs.
- rust-lang#88460
- rust-lang#96230

We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors.
- rust-lang#88526

Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful.
- rust-lang#90816
- rust-lang#92096
- rust-lang#95268

We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs.
- rust-lang#91693

Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls.
- rust-lang#91762

Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work.
- rust-lang#92985

## Potential Future work

### Universal type/const quantification

No work has been done to implement this. There are also some questions around implied bounds.

###  Object-safe GATs

The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation.

### GATified std lib types

It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`.

### Reduce the need for `for<'a>`

Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax:

```rust
trait Iterable {
    type Iter<'a>: Iterator<Item = Self::Item<'a>>;
}

fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`!
```

### Better implied bounds on higher-ranked things

Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...`

There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)).

## Alternatives

### Make generics on associated type in bounds a binder

Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since.

Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)).

### Stabilize lifetime GATs first

This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason.

## History

* On 2016-04-30, [RFC opened](rust-lang/rfcs#1598)
* On 2017-09-02, RFC merged and [tracking issue opened](rust-lang#44265)
* On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang#44766)
* On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang#45904)
* On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706)
* On 2018-04-23, [Feature gate where clauses on associated types](rust-lang#49368)
* On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang#49423)
* On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134)
* On 2019-12-21, [Make GATs less ICE-prone](rust-lang#67160)
* On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang#68938)
* On 2020-06-20, [Projection bound validation](rust-lang#72788)
* On 2020-10-06, [Separate projection bounds and predicates](rust-lang#73905)
* On 2021-02-05, [Generic associated types in trait paths](rust-lang#79554)
* On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang#81823)
* On 2021-04-28, [Make traits with GATs not object safe](rust-lang#84622)
* On 2021-05-11, [Improve diagnostics for GATs](rust-lang#82272)
* On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang#84623)
* On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang#86993)
* On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang#87479)
* On 2021-08-25, [Normalize projections under binders](rust-lang#85499)
* On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html)
* On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang#88336)
* On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang#89122)
* On 2021-11-06, [Implementation of GATs outlives lint](rust-lang#89970)
* On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang#92118)
* On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang#92865)
* On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang#92917)
* On 2022-02-15, [Rework GAT where clause check](rust-lang#93820)
* On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang#93892)
* On 2022-03-03, [Support GATs in Rustdoc](rust-lang#94009)
* On 2022-03-06, [Change location of where clause on GATs](rust-lang#90076)
* On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html)
* On 2022-05-04, [Stabilization PR](rust-lang#96709)
calebcartwright pushed a commit to calebcartwright/rustfmt that referenced this pull request Jan 24, 2023
Stabilize generic associated types

Closes #44265

r? `@nikomatsakis`

# ⚡ Status of the discussion ⚡

* [x] There have been several serious concerns raised, [summarized here](rust-lang/rust#96709 (comment)).
* [x] There has also been a [deep-dive comment](rust-lang/rust#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue.
* [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md).
* [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html).
* [x] [FCP has been proposed](rust-lang/rust#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members.

# Stabilization proposal

This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step.

Tracking issue: #44265
Initiative: https://rust-lang.github.io/generic-associated-types-initiative/
RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md
Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable).

## Motivation

There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it).

There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features.

This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases.

## What is stabilized

The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not.

```rust
trait ATraitWithGATs {
    type Assoc<'a, T> where T: 'a;
}

trait ATraitWithoutGATs<'a, T> {
    type Assoc where T: 'a;
}
```

When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation.

```rust
struct X;
struct Y;

impl ATraitWithGATs for X {
    type Assoc<'a, T> = &'a T
      where T: 'a;
}
impl ATraitWithGATs for Y {
    type Assoc<'a, T>
      where T: 'a
    = &'a T;
}
```

To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds:

```rust
fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T>
  where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> {
    ...
}
```

GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang/rust#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type.

To take a relatively simple example:

```rust
trait Iterable {
    type Item<'a>;
    type Iterator<'a>: Iterator<Item = Self::Item<'a>>;

    fn iter<'x>(&'x self) -> Self::Iterator<'x>;
    //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator`
    //  `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too
}
```

A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html).

## What isn't stabilized/implemented

### Universal type/const quantification

Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`.

Here is an example where this is needed:

```rust
trait Foo {}

trait Trait {
    type Assoc<F: Foo>;
}

trait Trait2: Sized {
    fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T);
}
```

In the above example, the *caller* must specify `F`, which is likely not what is desired.

### Object-safe GATs

Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed:

```rust
trait Trait {
    type Assoc<'a>;
}

fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {}
         //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed

let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>;
          //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed
```

### Higher-kinded types

You cannot write currently (and there are no current plans to implement this):

```rust
struct Struct<'a> {}

fn foo(s: for<'a> Struct<'a>) {}
```

## Tests

There are many tests covering GATs that can be found in  `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns.

- `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs
- `./collections-project-default.rs`: Interaction with associated type defaults
- `./collections.rs`: The `Collection` pattern
- `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters
- `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion
- `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same
- `./elided-in-expr-position.rs`: Disallow lifetime elision in return position
- `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path
- `./gat-in-trait-path.rs`: Base trait path case
- `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters
- `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path
- `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl
- `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked
- `./issue-76826.rs`: `Windows` pattern
- `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics
- `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough
- `./issue-87258_a.rs`: Unconstrained opaque type with TAITs
- `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds
- `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl
- `./issue-87429-specialization.rs`: Check that bounds hold under specialization
- `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function
- `./issue-90014.rs`: Lifetime bounds are checked with TAITs
- `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs
- `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified.
- `./issue-95305.rs`: Disallow lifetime elision in trait paths
- `./iterable.rs`: `Iterable` pattern
- `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error
- `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable)
- `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait
- `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait
- `./pointer_family.rs`: `PointerFamily` pattern
- `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds
- `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait
- `./shadowing.rs`: Don't allow lifetime shadowing in params
- `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern
- `./trait-objects.rs`: Disallow trait objects for traits with GATs
- `./variance_constraints.rs`: Require that GAT substs be invariant

## Remaining bugs and open issues

A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types

There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`.

Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.)

Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound.
- #85533
- #87803

In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types.
- #87755
- #87758

Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other.
- #87831
- #90573

We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes.
- #88382

When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs.
- #88460
- #96230

We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors.
- #88526

Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful.
- #90816
- #92096
- #95268

We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs.
- #91693

Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls.
- #91762

Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work.
- #92985

## Potential Future work

### Universal type/const quantification

No work has been done to implement this. There are also some questions around implied bounds.

###  Object-safe GATs

The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation.

### GATified std lib types

It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`.

### Reduce the need for `for<'a>`

Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax:

```rust
trait Iterable {
    type Iter<'a>: Iterator<Item = Self::Item<'a>>;
}

fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`!
```

### Better implied bounds on higher-ranked things

Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...`

There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)).

## Alternatives

### Make generics on associated type in bounds a binder

Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since.

Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)).

### Stabilize lifetime GATs first

This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason.

## History

* On 2016-04-30, [RFC opened](rust-lang/rfcs#1598)
* On 2017-09-02, RFC merged and [tracking issue opened](rust-lang/rust#44265)
* On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang/rust#44766)
* On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang/rust#45904)
* On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706)
* On 2018-04-23, [Feature gate where clauses on associated types](rust-lang/rust#49368)
* On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang/rust#49423)
* On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134)
* On 2019-12-21, [Make GATs less ICE-prone](rust-lang/rust#67160)
* On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang/rust#68938)
* On 2020-06-20, [Projection bound validation](rust-lang/rust#72788)
* On 2020-10-06, [Separate projection bounds and predicates](rust-lang/rust#73905)
* On 2021-02-05, [Generic associated types in trait paths](rust-lang/rust#79554)
* On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang/rust#81823)
* On 2021-04-28, [Make traits with GATs not object safe](rust-lang/rust#84622)
* On 2021-05-11, [Improve diagnostics for GATs](rust-lang/rust#82272)
* On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang/rust#84623)
* On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang/rust#86993)
* On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang/rust#87479)
* On 2021-08-25, [Normalize projections under binders](rust-lang/rust#85499)
* On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html)
* On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang/rust#88336)
* On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang/rust#89122)
* On 2021-11-06, [Implementation of GATs outlives lint](rust-lang/rust#89970)
* On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang/rust#92118)
* On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang/rust#92865)
* On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang/rust#92917)
* On 2022-02-15, [Rework GAT where clause check](rust-lang/rust#93820)
* On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang/rust#93892)
* On 2022-03-03, [Support GATs in Rustdoc](rust-lang/rust#94009)
* On 2022-03-06, [Change location of where clause on GATs](rust-lang/rust#90076)
* On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html)
* On 2022-05-04, [Stabilization PR](rust-lang/rust#96709)
RalfJung pushed a commit to RalfJung/rust-analyzer that referenced this pull request Apr 20, 2024
Stabilize generic associated types

Closes #44265

r? `@nikomatsakis`

# ⚡ Status of the discussion ⚡

* [x] There have been several serious concerns raised, [summarized here](rust-lang/rust#96709 (comment)).
* [x] There has also been a [deep-dive comment](rust-lang/rust#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue.
* [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md).
* [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html).
* [x] [FCP has been proposed](rust-lang/rust#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members.

# Stabilization proposal

This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step.

Tracking issue: #44265
Initiative: https://rust-lang.github.io/generic-associated-types-initiative/
RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md
Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable).

## Motivation

There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it).

There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features.

This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases.

## What is stabilized

The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not.

```rust
trait ATraitWithGATs {
    type Assoc<'a, T> where T: 'a;
}

trait ATraitWithoutGATs<'a, T> {
    type Assoc where T: 'a;
}
```

When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation.

```rust
struct X;
struct Y;

impl ATraitWithGATs for X {
    type Assoc<'a, T> = &'a T
      where T: 'a;
}
impl ATraitWithGATs for Y {
    type Assoc<'a, T>
      where T: 'a
    = &'a T;
}
```

To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds:

```rust
fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T>
  where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> {
    ...
}
```

GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang/rust#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type.

To take a relatively simple example:

```rust
trait Iterable {
    type Item<'a>;
    type Iterator<'a>: Iterator<Item = Self::Item<'a>>;

    fn iter<'x>(&'x self) -> Self::Iterator<'x>;
    //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator`
    //  `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too
}
```

A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html).

## What isn't stabilized/implemented

### Universal type/const quantification

Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`.

Here is an example where this is needed:

```rust
trait Foo {}

trait Trait {
    type Assoc<F: Foo>;
}

trait Trait2: Sized {
    fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T);
}
```

In the above example, the *caller* must specify `F`, which is likely not what is desired.

### Object-safe GATs

Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed:

```rust
trait Trait {
    type Assoc<'a>;
}

fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {}
         //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed

let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>;
          //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed
```

### Higher-kinded types

You cannot write currently (and there are no current plans to implement this):

```rust
struct Struct<'a> {}

fn foo(s: for<'a> Struct<'a>) {}
```

## Tests

There are many tests covering GATs that can be found in  `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns.

- `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs
- `./collections-project-default.rs`: Interaction with associated type defaults
- `./collections.rs`: The `Collection` pattern
- `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters
- `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion
- `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same
- `./elided-in-expr-position.rs`: Disallow lifetime elision in return position
- `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path
- `./gat-in-trait-path.rs`: Base trait path case
- `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters
- `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path
- `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl
- `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked
- `./issue-76826.rs`: `Windows` pattern
- `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics
- `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough
- `./issue-87258_a.rs`: Unconstrained opaque type with TAITs
- `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds
- `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl
- `./issue-87429-specialization.rs`: Check that bounds hold under specialization
- `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function
- `./issue-90014.rs`: Lifetime bounds are checked with TAITs
- `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs
- `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified.
- `./issue-95305.rs`: Disallow lifetime elision in trait paths
- `./iterable.rs`: `Iterable` pattern
- `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error
- `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable)
- `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait
- `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait
- `./pointer_family.rs`: `PointerFamily` pattern
- `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds
- `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait
- `./shadowing.rs`: Don't allow lifetime shadowing in params
- `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern
- `./trait-objects.rs`: Disallow trait objects for traits with GATs
- `./variance_constraints.rs`: Require that GAT substs be invariant

## Remaining bugs and open issues

A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types

There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`.

Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.)

Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound.
- #85533
- #87803

In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types.
- #87755
- #87758

Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other.
- #87831
- #90573

We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes.
- #88382

When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs.
- #88460
- #96230

We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors.
- #88526

Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful.
- #90816
- #92096
- #95268

We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs.
- #91693

Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls.
- #91762

Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work.
- #92985

## Potential Future work

### Universal type/const quantification

No work has been done to implement this. There are also some questions around implied bounds.

###  Object-safe GATs

The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation.

### GATified std lib types

It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`.

### Reduce the need for `for<'a>`

Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax:

```rust
trait Iterable {
    type Iter<'a>: Iterator<Item = Self::Item<'a>>;
}

fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`!
```

### Better implied bounds on higher-ranked things

Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...`

There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)).

## Alternatives

### Make generics on associated type in bounds a binder

Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since.

Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)).

### Stabilize lifetime GATs first

This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason.

## History

* On 2016-04-30, [RFC opened](rust-lang/rfcs#1598)
* On 2017-09-02, RFC merged and [tracking issue opened](rust-lang/rust#44265)
* On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang/rust#44766)
* On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang/rust#45904)
* On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706)
* On 2018-04-23, [Feature gate where clauses on associated types](rust-lang/rust#49368)
* On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang/rust#49423)
* On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134)
* On 2019-12-21, [Make GATs less ICE-prone](rust-lang/rust#67160)
* On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang/rust#68938)
* On 2020-06-20, [Projection bound validation](rust-lang/rust#72788)
* On 2020-10-06, [Separate projection bounds and predicates](rust-lang/rust#73905)
* On 2021-02-05, [Generic associated types in trait paths](rust-lang/rust#79554)
* On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang/rust#81823)
* On 2021-04-28, [Make traits with GATs not object safe](rust-lang/rust#84622)
* On 2021-05-11, [Improve diagnostics for GATs](rust-lang/rust#82272)
* On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang/rust#84623)
* On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang/rust#86993)
* On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang/rust#87479)
* On 2021-08-25, [Normalize projections under binders](rust-lang/rust#85499)
* On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html)
* On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang/rust#88336)
* On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang/rust#89122)
* On 2021-11-06, [Implementation of GATs outlives lint](rust-lang/rust#89970)
* On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang/rust#92118)
* On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang/rust#92865)
* On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang/rust#92917)
* On 2022-02-15, [Rework GAT where clause check](rust-lang/rust#93820)
* On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang/rust#93892)
* On 2022-03-03, [Support GATs in Rustdoc](rust-lang/rust#94009)
* On 2022-03-06, [Change location of where clause on GATs](rust-lang/rust#90076)
* On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html)
* On 2022-05-04, [Stabilization PR](rust-lang/rust#96709)
RalfJung pushed a commit to RalfJung/rust-analyzer that referenced this pull request Apr 27, 2024
Stabilize generic associated types

Closes #44265

r? `@nikomatsakis`

# ⚡ Status of the discussion ⚡

* [x] There have been several serious concerns raised, [summarized here](rust-lang/rust#96709 (comment)).
* [x] There has also been a [deep-dive comment](rust-lang/rust#96709 (comment)) explaining some of the "patterns of code" that are enabled by GATs, based on use-cases posted to this thread or on the tracking issue.
* [x] We have modeled some aspects of GATs in [a-mir-formality](https://github.com/nikomatsakis/a-mir-formality) to give better confidence in how they will be resolved in the future. [You can read a write-up here](https://github.com/rust-lang/types-team/blob/master/minutes/2022-07-08-implied-bounds-and-wf-checking.md).
* [x] The major points of the discussion have been [summarized on the GAT initiative repository](https://rust-lang.github.io/generic-associated-types-initiative/mvp.html).
* [x] [FCP has been proposed](rust-lang/rust#96709 (comment)) and we are awaiting final decisions and discussion amidst the relevant team members.

# Stabilization proposal

This PR proposes the stabilization of `#![feature(generic_associated_types)]`. While there a number of future additions to be made and bugs to be fixed (both discussed below), properly doing these will require significant language design and will ultimately likely be backwards-compatible. Given the overwhelming desire to have some form of generic associated types (GATs) available on stable and the stability of the "simple" uses, stabilizing the current subset of GAT features is almost certainly the correct next step.

Tracking issue: #44265
Initiative: https://rust-lang.github.io/generic-associated-types-initiative/
RFC: https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md
Version: 1.65 (2022-08-22 => beta, 2022-11-03 => stable).

## Motivation

There are a myriad of potential use cases for GATs. Stabilization unblocks probable future language features (e.g. async functions in traits), potential future standard library features (e.g. a `LendingIterator` or some form of `Iterator` with a lifetime generic), and a plethora of user use cases (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it).

There are a myriad of potential use cases for GATs. First, there are many users that have chosen to not use GATs primarily because they are not stable (some of which can be seen just by scrolling through the tracking issue and looking at all the issues linking to it). Second, while language feature desugaring isn't *blocked* on stabilization, it gives more confidence on using the feature. Likewise, library features like `LendingIterator` are not necessarily blocked on stabilization to be implemented unstably; however few, if any, public-facing APIs actually use unstable features.

This feature has a long history of design, discussion, and developement - the RFC was first introduced roughly 6 years ago. While there are still a number of features left to implement and bugs left to fix, it's clear that it's unlikely those will have backwards-incompatibility concerns. Additionally, the bugs that do exist do not strongly impede the most-common use cases.

## What is stabilized

The primary language feature stabilized here is the ability to have generics on associated types, as so. Additionally, where clauses on associated types will now be accepted, regardless if the associated type is generic or not.

```rust
trait ATraitWithGATs {
    type Assoc<'a, T> where T: 'a;
}

trait ATraitWithoutGATs<'a, T> {
    type Assoc where T: 'a;
}
```

When adding an impl for a trait with generic associated types, the generics for the associated type are copied as well. Note that where clauses are allowed both after the specified type and before the equals sign; however, the latter is a warn-by-default deprecation.

```rust
struct X;
struct Y;

impl ATraitWithGATs for X {
    type Assoc<'a, T> = &'a T
      where T: 'a;
}
impl ATraitWithGATs for Y {
    type Assoc<'a, T>
      where T: 'a
    = &'a T;
}
```

To use a GAT in a function, generics are specified on the associated type, as if it was a struct or enum. GATs can also be specified in trait bounds:

```rust
fn accepts_gat<'a, T>(t: &'a T) -> T::Assoc<'a, T>
  where for<'x> T: ATraitWithGATs<Assoc<'a, T> = &'a T> {
    ...
}
```

GATs can also appear in trait methods. However, depending on how they are used, they may confer where clauses on the associated type definition. More information can be found [here](rust-lang/rust#87479). Briefly, where clauses are required when those bounds can be proven in the methods that *construct* the GAT or other associated types that use the GAT in the trait. This allows impls to have maximum flexibility in the types defined for the associated type.

To take a relatively simple example:

```rust
trait Iterable {
    type Item<'a>;
    type Iterator<'a>: Iterator<Item = Self::Item<'a>>;

    fn iter<'x>(&'x self) -> Self::Iterator<'x>;
    //^ We know that `Self: 'a` for `Iterator<'a>`, so we require that bound on `Iterator`
    //  `Iterator` uses `Self::Item`, so we also require a `Self: 'a` on `Item` too
}
```

A couple well-explained examples are available in a previous [blog post](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html).

## What isn't stabilized/implemented

### Universal type/const quantification

Currently, you can write a bound like `X: for<'a> Trait<Assoc<'a> = &'a ()>`. However, you cannot currently write `for<T> X: Trait<Assoc<T> = T>` or `for<const N> X: Trait<Assoc<N> = [usize; N]>`.

Here is an example where this is needed:

```rust
trait Foo {}

trait Trait {
    type Assoc<F: Foo>;
}

trait Trait2: Sized {
    fn foo<F: Foo, T: Trait<Assoc<F> = F>>(_t: T);
}
```

In the above example, the *caller* must specify `F`, which is likely not what is desired.

### Object-safe GATs

Unlike non-generic associated types, traits with GATs are not currently object-safe. In other words the following are not allowed:

```rust
trait Trait {
    type Assoc<'a>;
}

fn foo(t: &dyn for<'a> Trait<Assoc<'a> = &'a ()>) {}
         //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed

let ty: Box<dyn for<'a> Trait<Assoc<'a> = &'a ()>>;
          //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ not allowed
```

### Higher-kinded types

You cannot write currently (and there are no current plans to implement this):

```rust
struct Struct<'a> {}

fn foo(s: for<'a> Struct<'a>) {}
```

## Tests

There are many tests covering GATs that can be found in  `src/test/ui/generic-associated-types`. Here, I'll list (in alphanumeric order) tests highlight some important behavior or contain important patterns.

- `./parse/*`: Parsing of GATs in traits and impls, and the trait path with GATs
- `./collections-project-default.rs`: Interaction with associated type defaults
- `./collections.rs`: The `Collection` pattern
- `./const-generics-gat-in-trait-return-type-*.rs`: Const parameters
- `./constraint-assoc-type-suggestion.rs`: Emit correct syntax in suggestion
- `./cross-crate-bounds.rs`: Ensure we handles bounds across crates the same
- `./elided-in-expr-position.rs`: Disallow lifetime elision in return position
- `./gat-in-trait-path-undeclared-lifetime.rs`: Ensure we error on undeclared lifetime in trait path
- `./gat-in-trait-path.rs`: Base trait path case
- `./gat-trait-path-generic-type-arg.rs`: Don't allow shadowing of parameters
- `./gat-trait-path-parenthesised-args.rs`: Don't allow paranthesized args in trait path
- `./generic-associated-types-where.rs`: Ensure that we require where clauses from trait to be met on impl
- `./impl_bounds.rs`: Check that the bounds on GATs in an impl are checked
- `./issue-76826.rs`: `Windows` pattern
- `./issue-78113-lifetime-mismatch-dyn-trait-box.rs`: Implicit 'static diagnostics
- `./issue-84931.rs`: Ensure that we have a where clause on GAT to ensure trait parameter lives long enough
- `./issue-87258_a.rs`: Unconstrained opaque type with TAITs
- `./issue-87429-2.rs`: Ensure we can use bound vars in the bounds
- `./issue-87429-associated-type-default.rs`: Ensure bounds hold with associated type defaults, for both trait and impl
- `./issue-87429-specialization.rs`: Check that bounds hold under specialization
- `./issue-88595.rs`: Under the outlives lint, we require a bound for both trait and GAT lifetime when trait lifetime is used in function
- `./issue-90014.rs`: Lifetime bounds are checked with TAITs
- `./issue-91139.rs`: Under migrate mode, but not NLL, we don't capture implied bounds from HRTB lifetimes used in a function and GATs
- `./issue-91762.rs`: We used to too eagerly pick param env candidates when normalizing with GATs. We now require explicit parameters specified.
- `./issue-95305.rs`: Disallow lifetime elision in trait paths
- `./iterable.rs`: `Iterable` pattern
- `./method-unsatified-assoc-type-predicate.rs`: Print predicates with GATs correctly in method resolve error
- `./missing_lifetime_const.rs`: Ensure we must specify lifetime args (not elidable)
- `./missing-where-clause-on-trait.rs`: Ensure we don't allow stricter bounds on impl than trait
- `./parameter_number_and_kind_impl.rs`: Ensure paramters on GAT in impl match GAT in trait
- `./pointer_family.rs`: `PointerFamily` pattern
- `./projection-bound-cycle.rs`: Don't allow invalid cycles to prove bounds
- `./self-outlives-lint.rs`: Ensures that an e.g. `Self: 'a` is written on the traits GAT if that bound can be implied from the GAT usage in the trait
- `./shadowing.rs`: Don't allow lifetime shadowing in params
- `./streaming_iterator.rs`: `StreamingIterator`(`LendingIterator`) pattern
- `./trait-objects.rs`: Disallow trait objects for traits with GATs
- `./variance_constraints.rs`: Require that GAT substs be invariant

## Remaining bugs and open issues

A full list of remaining open issues can be found at: https://github.com/rust-lang/rust/labels/F-generic_associated_types

There are some `known-bug` tests in-tree at `src/test/ui/generic-associated-types/bugs`.

Here I'll categorize most of those that GAT bugs (or involve a pattern found more with GATs), but not those that include GATs but not a GAT issue in and of itself. (I also won't include issues directly for things listed elsewhere here.)

Using the concrete type of a GAT instead of the projection type can give errors, since lifetimes are chosen to be early-bound vs late-bound.
- #85533
- #87803

In certain cases, we can run into cycle or overflow errors. This is more generally a problem with associated types.
- #87755
- #87758

Bounds on an associatd type need to be proven by an impl, but where clauses need to be proven by the usage. This can lead to confusion when users write one when they mean the other.
- #87831
- #90573

We sometimes can't normalize closure signatures fully. Really an asociated types issue, but might happen a bit more frequently with GATs, since more obvious place for HRTB lifetimes.
- #88382

When calling a function, we assign types to parameters "too late", after we already try (and fail) to normalize projections. Another associated types issue that might pop up more with GATs.
- #88460
- #96230

We don't fully have implied bounds for lifetimes appearing in GAT trait paths, which can lead to unconstrained type errors.
- #88526

Suggestion for adding lifetime bounds can suggest unhelpful fixes (`T: 'a` instead of `Self: 'a`), but the next compiler error after making the suggested change is helpful.
- #90816
- #92096
- #95268

We can end up requiring that `for<'a> I: 'a` when we really want `for<'a where I: 'a> I: 'a`. This can leave unhelpful errors than effectively can't be satisfied unless `I: 'static`. Requires bigger changes and not only GATs.
- #91693

Unlike with non-generic associated types, we don't eagerly normalize with param env candidates. This is intended behavior (for now), to avoid accidentaly stabilizing picking arbitrary impls.
- #91762

Some Iterator adapter patterns (namely `filter`) require Polonius or unsafe to work.
- #92985

## Potential Future work

### Universal type/const quantification

No work has been done to implement this. There are also some questions around implied bounds.

###  Object-safe GATs

The intention is to make traits with GATs object-safe. There are some design work to be done around well-formedness rules and general implementation.

### GATified std lib types

It would be helpful to either introduce new std lib traits (like `LendingIterator`) or to modify existing ones (adding a `'a` generic to `Iterator::Item`). There also a number of other candidates, like `Index`/`IndexMut` and `Fn`/`FnMut`/`FnOnce`.

### Reduce the need for `for<'a>`

Seen [here](rust-lang/rfcs#1598 (comment)). One possible syntax:

```rust
trait Iterable {
    type Iter<'a>: Iterator<Item = Self::Item<'a>>;
}

fn foo<T>() where T: Iterable, T::Item<let 'a>: Display { } //note the `let`!
```

### Better implied bounds on higher-ranked things

Currently if we have a `type Item<'a> where self: 'a`, and a `for<'a> T: Iterator<Item<'a> = &'a ()`, this requires `for<'a> Self: 'a`. Really, we want `for<'a where T: 'a> ...`

There was some mentions of this all the back in the RFC thread [here](rust-lang/rfcs#1598 (comment)).

## Alternatives

### Make generics on associated type in bounds a binder

Imagine the bound `for<'a> T: Trait<Item<'a>= &'a ()>`. It might be that `for<'a>` is "too large" and it should instead be `T: Trait<for<'a> Item<'a>= &'a ()>`. Brought up in RFC thread [here](rust-lang/rfcs#1598 (comment)) and in a few places since.

Another related question: Is `for<'a>` the right syntax? Maybe `where<'a>`? Also originally found in RFC thread [here](rust-lang/rfcs#1598 (comment)).

### Stabilize lifetime GATs first

This has been brought up a few times. The idea is to only allow GATs with lifetime parameters to in initial stabilization. This was probably most useful prior to actual implementation. At this point, lifetimes, types, and consts are all implemented and work. It feels like an arbitrary split without strong reason.

## History

* On 2016-04-30, [RFC opened](rust-lang/rfcs#1598)
* On 2017-09-02, RFC merged and [tracking issue opened](rust-lang/rust#44265)
* On 2017-10-23, [Move Generics from MethodSig to TraitItem and ImplItem](rust-lang/rust#44766)
* On 2017-12-01, [Generic Associated Types Parsing & Name Resolution](rust-lang/rust#45904)
* On 2017-12-15, [https://github.com/rust-lang/rust/pull/46706](https://github.com/rust-lang/rust/pull/46706)
* On 2018-04-23, [Feature gate where clauses on associated types](rust-lang/rust#49368)
* On 2018-05-10, [Extend tests for RFC1598 (GAT)](rust-lang/rust#49423)
* On 2018-05-24, [Finish implementing GATs (Chalk)](rust-lang/chalk#134)
* On 2019-12-21, [Make GATs less ICE-prone](rust-lang/rust#67160)
* On 2020-02-13, [fix lifetime shadowing check in GATs](rust-lang/rust#68938)
* On 2020-06-20, [Projection bound validation](rust-lang/rust#72788)
* On 2020-10-06, [Separate projection bounds and predicates](rust-lang/rust#73905)
* On 2021-02-05, [Generic associated types in trait paths](rust-lang/rust#79554)
* On 2021-02-06, [Trait objects do not work with generic associated types](rust-lang/rust#81823)
* On 2021-04-28, [Make traits with GATs not object safe](rust-lang/rust#84622)
* On 2021-05-11, [Improve diagnostics for GATs](rust-lang/rust#82272)
* On 2021-07-16, [Make GATs no longer an incomplete feature](rust-lang/rust#84623)
* On 2021-07-16, [Replace associated item bound vars with placeholders when projecting](rust-lang/rust#86993)
* On 2021-07-26, [GATs: Decide whether to have defaults for `where Self: 'a`](rust-lang/rust#87479)
* On 2021-08-25, [Normalize projections under binders](rust-lang/rust#85499)
* On 2021-08-03, [The push for GATs stabilization](https://blog.rust-lang.org/2021/08/03/GATs-stabilization-push.html)
* On 2021-08-12, [Detect stricter constraints on gats where clauses in impls vs trait](rust-lang/rust#88336)
* On 2021-09-20, [Proposal: Change syntax of where clauses on type aliases](rust-lang/rust#89122)
* On 2021-11-06, [Implementation of GATs outlives lint](rust-lang/rust#89970)
* On 2021-12-29. [Parse and suggest moving where clauses after equals for type aliases](rust-lang/rust#92118)
* On 2022-01-15, [Ignore static lifetimes for GATs outlives lint](rust-lang/rust#92865)
* On 2022-02-08, [Don't constrain projection predicates with inference vars in GAT substs](rust-lang/rust#92917)
* On 2022-02-15, [Rework GAT where clause check](rust-lang/rust#93820)
* On 2022-02-19, [Only mark projection as ambiguous if GAT substs are constrained](rust-lang/rust#93892)
* On 2022-03-03, [Support GATs in Rustdoc](rust-lang/rust#94009)
* On 2022-03-06, [Change location of where clause on GATs](rust-lang/rust#90076)
* On 2022-05-04, [A shiny future with GATs blog post](https://jackh726.github.io/rust/2022/05/04/a-shiny-future-with-gats.html)
* On 2022-05-04, [Stabilization PR](rust-lang/rust#96709)
jieyouxu added a commit to jieyouxu/rust that referenced this pull request May 18, 2024
Only make GAT ambiguous in `match_projection_projections` considering shallow resolvability

In rust-lang#123537, I tweaked the hack from rust-lang#93892 to use `resolve_vars_if_possible` instead of `shallow_resolve`. This considers more inference guidance ambiguous. This resulted in crater regressions in rust-lang#125196.

I've effectively reverted the change to the old behavior. That being said, I don't *like* this behavior, but I'd rather keep it for now since rust-lang#123537 was not meant to make any behavioral changes. See the attached example.

This also affects the new solver, for the record, which doesn't have any rules about not guiding inference from param-env candidates which may constrain GAT args as a side-effect.

r? `@lcnr` or `@jackh726`
rust-timer added a commit to rust-lang-ci/rust that referenced this pull request May 18, 2024
Rollup merge of rust-lang#125214 - compiler-errors:gat-guide, r=lcnr

Only make GAT ambiguous in `match_projection_projections` considering shallow resolvability

In rust-lang#123537, I tweaked the hack from rust-lang#93892 to use `resolve_vars_if_possible` instead of `shallow_resolve`. This considers more inference guidance ambiguous. This resulted in crater regressions in rust-lang#125196.

I've effectively reverted the change to the old behavior. That being said, I don't *like* this behavior, but I'd rather keep it for now since rust-lang#123537 was not meant to make any behavioral changes. See the attached example.

This also affects the new solver, for the record, which doesn't have any rules about not guiding inference from param-env candidates which may constrain GAT args as a side-effect.

r? `@lcnr` or `@jackh726`
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

#92917 breaks type inference on GATs
7 participants