Skip to content

samskarion/genai-stack

 
 

Repository files navigation

GenAI Stack

This GenAI application stack will get you started building your own GenAI application in no time. The demo applications can serve as inspiration or as a starting point. Learn more about the details in the technical blog post.

Configure

Create a .env file from the environment template file env.example

Available variables:

Variable Name Default value Description
OLLAMA_BASE_URL http://host.docker.internal:11434 REQUIRED - URL to Ollama LLM API
NEO4J_URI neo4j://database:7687 REQUIRED - URL to Neo4j database
NEO4J_USERNAME neo4j REQUIRED - Username for Neo4j database
NEO4J_PASSWORD password REQUIRED - Password for Neo4j database
LLM llama2 REQUIRED - Can be any Ollama model tag, or gpt-4 or gpt-3.5
OPENAI_API_KEY REQUIRED - Only if LLM=gpt-4 or LLM=gpt-3.5
EMBEDDING_MODEL sentence_transformer REQUIRED - Can be sentence_transformer, openai or ollama
LANGCHAIN_ENDPOINT "https://api.smith.langchain.com" OPTIONAL - URL to Langchain Smith API
LANGCHAIN_TRACING_V2 false OPTIONAL - Enable Langchain tracing v2
LANGCHAIN_PROJECT OPTIONAL - Langchain project name
LANGCHAIN_API_KEY OPTIONAL - Langchain API key

LLM Configuration

MacOS and Linux users can use any LLM that's available via Ollama. Check the "tags" section under the model page you want to use on https://ollama.ai/library and write the tag for the value of the environment variable LLM= in th e.env file. All platforms can use GPT-3.5-turbo and GPT-4 (bring your own API keys for OpenAIs models).

MacOS Install Ollama on MacOS and start it before running docker compose up.

Linux No need to install Ollama manually, it will run in a container as part of the stack when running with the Linux profile: run docker compose --profile linux up. Make sure to set the OLLAMA_BASE_URL=http://llm:11434 in the .env file when using Ollama docker container.

Windows Not supported by Ollama, so Windows users need to generate a OpenAI API key and configure the stack to use gpt-3.5 or gpt-4 in the .env file.

Develop

Warning

There is a performance issue that impacts python applications in the latest release of Docker Desktop. Until a fix is available, please use version 4.23.0 or earlier.

To start everything

docker compose up

If changes to build scripts has been made, rebuild.

docker compose up --build

To enter watch mode (auto rebuild on file changes). First start everything, then in new terminal:

docker compose alpha watch

Shutdown If health check fails or containers don't start up as expected, shutdown completely to start up again.

docker compose down

Applications

Here's what's in this repo:

Name Main files Compose name URLs Description
Support Bot bot.py bot http://localhost:8501 Main usecase. Fullstack Python application.
Stack Overflow Loader loader.py loader http://localhost:8502 Load SO data into the database (create vector embeddings etc). Fullstack Python application.
PDF Reader pdf_bot.py pdf_bot http://localhost:8503 Read local PDF and ask it questions. Fullstack Python application.
Standalone Bot API api.py api http://localhost:8504 Standalone HTTP API streaming (SSE) + non-streaming endpoints. Python.
Standalone Bot UI front-end/ front-end http://localhost:8505 Standalone client that uses the Standalone Bot API to interact with the model. JavaScript (Svelte) front-end.

The database can be explored at http://localhost:7474.

App 1 - Support Agent Bot

UI: http://localhost:8501 DB client: http://localhost:7474

  • answer support question based on recent entries
  • provide summarized answers with sources
  • demonstrate difference between
    • RAG Disabled (pure LLM response)
    • RAG Enabled (vector + knowledge graph context)
  • allow to generate a high quality support ticket for the current conversation based on the style of highly rated questions in the database.

(Chat input + RAG mode selector)

(CTA to auto generate support ticket draft) (UI of the auto generated support ticket draft)

App 2 - Loader

UI: http://localhost:8502 DB client: http://localhost:7474

  • import recent Stack Overflow data for certain tags into a KG
  • embed questions and answers and store in vector index
  • UI: choose tags, run import, see progress, some stats of data in the database
  • Load high ranked questions (regardless of tags) to support the ticket generation feature of App 1.

App 3 Question / Answer with a local PDF

UI: http://localhost:8503
DB client: http://localhost:7474

This application lets you load a local PDF into text chunks and embed it into Neo4j so you can ask questions about its contents and have the LLM answer them using vector similarity search.

App 4 Standalone HTTP API

Endpoints:

Example cURL command:

curl http://localhost:8504/query-stream\?text\=minimal%20hello%20world%20in%20python\&rag\=false

Exposes the functionality to answer questions in the same way as App 1 above. Uses same code and prompts.

App 5 Static front-end

UI: http://localhost:8505

This application has the same features as App 1, but is built separate from the back-end code using modern best practices (Vite, Svelte, Tailwind).
The auto-reload on changes are instant using the Docker watch sync config.

About

Langchain + Docker + Neo4j

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.5%
  • Svelte 16.0%
  • Dockerfile 9.0%
  • JavaScript 2.2%
  • CSS 1.0%
  • HTML 0.9%
  • Shell 0.4%