Skip to content

ML Zoomcamp from DataTalks.Club by Alexey Grigorev, Principle Data Scientist at OLX Group, Berlin.

Notifications You must be signed in to change notification settings

sanghvirajit/ML-Zoomcamp

Repository files navigation

reading_plan

Machine Learning Bookcamp

The code from the Machine Learning Bookcamp book

Useful links:

Machine Learning Zoomcamp

ML Zoomcamp is a course based on the book

  • It's online and free
  • The course starts on September, 6
  • It's possible to join at any moment

Chapters

Chapter 1: Introduction to Machine Learning

  • Understanding machine learning and the problems it can solve
  • CRISP-DM: Organizing a successful machine learning project
  • Training and selecting machine learning models
  • Performing model validation

Chapter 2: Machine Learning for Regression

  • Creating a car-price prediction project with a linear regression model
  • Doing an initial exploratory data analysis with Jupyter notebooks
  • Setting up a validation framework
  • Implementing the linear regression model from scratch
  • Performing simple feature engineering for the model
  • Keeping the model under control with regularization
  • Using the model to predict car prices

Chapter 3: Machine Learning for Classification

  • Predicting customers who will churn with logistic regression
  • Doing exploratory data analysis for identifying important features
  • Encoding categorical variables to use them in machine learning models
  • Using logistic regression for classification

Chapter 4: Evaluation Metrics for Classification

  • Accuracy as a way of evaluating binary classification models and its limitations
  • Determining where our model makes mistakes using a confusion table
  • Deriving other metrics like precision and recall from the confusion table
  • Using ROC and AUC to further understand the performance of a binary classification model
  • Cross-validating a model to make sure it behaves optimally
  • Tuning the parameters of a model to achieve the best predictive performance

Chapter 5: Deploying Machine Learning Models

  • Saving models with Pickle
  • Serving models with Flask
  • Managing dependencies with Pipenv
  • Making the service self-contained with Docker
  • Deploying it to the cloud using AWS Elastic Beanstalk

Chapter 6: Decision Trees and Ensemble Learning

  • Predicting the risk of default with tree-based models
  • Decision trees and the decision tree learning algorithm
  • Random forest: putting multiple trees together into one model
  • Gradient boosting as an alternative way of combining decision trees

Chapter 7: Neural Networks and Deep Learning

  • Convolutional neural networks for image classification
  • TensorFlow and Keras — frameworks for building neural networks
  • Using pre-trained neural networks
  • Internals of a convolutional neural network
  • Training a model with transfer learning
  • Data augmentations — the process of generating more training data

Chapter 8: Serverless Deep Learning

  • Serving models with TensorFlow-Lite — a light-weight environment for applying TensorFlow models
  • Deploying deep learning models with AWS Lambda
  • Exposing the Lambda function as a web service via API Gateway

Chapter 9: Kubernetes and Kubeflow

  • Understanding different methods of deploying and serving models in the cloud.
  • Serving Keras and TensorFlow models with TensorFlow-Serving
  • Deploying TensorFlow-Serving to Kubernetes

About

ML Zoomcamp from DataTalks.Club by Alexey Grigorev, Principle Data Scientist at OLX Group, Berlin.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages