The code from the Machine Learning Bookcamp book
Useful links:
- https://mlbookcamp.com: supplimentary materials
- https://datatalks.club: the place to talk about data (and the book: join the
#ml-bookcamp
channel to ask questions about the book and report any problems)
ML Zoomcamp is a course based on the book
- It's online and free
- The course starts on September, 6
- It's possible to join at any moment
- Understanding machine learning and the problems it can solve
- CRISP-DM: Organizing a successful machine learning project
- Training and selecting machine learning models
- Performing model validation
- Creating a car-price prediction project with a linear regression model
- Doing an initial exploratory data analysis with Jupyter notebooks
- Setting up a validation framework
- Implementing the linear regression model from scratch
- Performing simple feature engineering for the model
- Keeping the model under control with regularization
- Using the model to predict car prices
- Predicting customers who will churn with logistic regression
- Doing exploratory data analysis for identifying important features
- Encoding categorical variables to use them in machine learning models
- Using logistic regression for classification
- Accuracy as a way of evaluating binary classification models and its limitations
- Determining where our model makes mistakes using a confusion table
- Deriving other metrics like precision and recall from the confusion table
- Using ROC and AUC to further understand the performance of a binary classification model
- Cross-validating a model to make sure it behaves optimally
- Tuning the parameters of a model to achieve the best predictive performance
- Saving models with Pickle
- Serving models with Flask
- Managing dependencies with Pipenv
- Making the service self-contained with Docker
- Deploying it to the cloud using AWS Elastic Beanstalk
- Predicting the risk of default with tree-based models
- Decision trees and the decision tree learning algorithm
- Random forest: putting multiple trees together into one model
- Gradient boosting as an alternative way of combining decision trees
- Convolutional neural networks for image classification
- TensorFlow and Keras — frameworks for building neural networks
- Using pre-trained neural networks
- Internals of a convolutional neural network
- Training a model with transfer learning
- Data augmentations — the process of generating more training data
- Serving models with TensorFlow-Lite — a light-weight environment for applying TensorFlow models
- Deploying deep learning models with AWS Lambda
- Exposing the Lambda function as a web service via API Gateway
- Understanding different methods of deploying and serving models in the cloud.
- Serving Keras and TensorFlow models with TensorFlow-Serving
- Deploying TensorFlow-Serving to Kubernetes