Scripts and parameter files used in the pair differencing project.
The simulation comprises only the SAT 90 GHz frequency band and spans one observing year.
We simulate the following data:
- noise: atmosphere, instrumental noise
- cmb
We only simulate the first calendar day of each month.
The software packages used are
TOAST 3,
sotodlib
and mappraiser.
They are provided as submodules in the extern
folder so that the exact setup can be reproduced easily.
The simulation worfklow, so_mappraiser.py
, is a modified version of the toast_so_sim.py
script in sotodlib.
Unless otherwise noted, all scripts should be run from the root of the repository.
Setup
get_defaults.sh
: Useso_mappraiser.py
to generate a default parameter file for referencesat.toml
: Master parameter file for theso_mappraiser.py
workflowsat.par
,atm.par
: Sets of command line parameters for the workflowffp10_lensed_scl_100_nside0512.fits
: Input map to be observed during simulation
Schedule files
schedules/schedule.01.south.txt
: Schedule fileschedules/schedule.small.txt
: Truncated schedule file for laptop testsschedules/schedule.opti.txt
: Schedule file with a single scan
Tests (laptop: truncated schedule, decimated focal plane)
tests/opti
: Evaluate the optimality of pair-differencing compared to maximum-likelihood (single observation)run.white.uniform.sh
: all detector pairs have the same white noise level (but not detectors in a pair)run.white.variable.sh
: all detectors have different white noise levelsrun.one_over_f.sh
: all detectors have different 1/f noise parametersrun.atm.sh
: in addition to variable instrumental noise, simulate atmosphere
tests/syst
: Evaluate the impact of systematic effects on the pair-differencing approachrun.atm.cache.sh
: simulate and cache the atmosphere simulationrun.baseline.sh
: run the baseline configuration (ideal case)run.gains.constant.sh
: run with gain errors which are the same for all detector pairs
Execution (Jean-Zay: full schedule)
slurm/run.atm.cache.slurm
: Simulate and cache the atmosphere simulationslurm/get_sample_data.slurm
: Get sample observation data for testingslurm/opti/*
: Run the optimality tests
Post-processing
post/compute_spectra.py
: Compute and save power spectra for all runspost/get_input_spectra.py
: Compute and save power spectra of input mappost/get_mask_apo.py
: Create and save a mask (requires NaMaster)post/plot_maps_all.py
: Plot difference maps and histograms for all runs in a root directorypost/plot_maps.py
: Produce difference maps and histograms for a given runpost/plot_spectra.py
: Plot power spectra recursively for all runs in a root directorypost/spectrum.py
: Power spectrum routinesslurm/run.spectra.slurm
: Job script to compute power spectra