Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Split up PCA tests #3268

Merged
merged 1 commit into from
Sep 30, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 24 additions & 20 deletions tests/test_pca.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from __future__ import annotations

import warnings
from contextlib import nullcontext
from functools import wraps
from typing import TYPE_CHECKING

Expand Down Expand Up @@ -190,19 +191,27 @@ def test_pca_warnings_sparse():


def test_pca_transform(array_type):
A = array_type(A_list).astype("float32")
adata = AnnData(array_type(A_list).astype("float32"))
A_pca_abs = np.abs(A_pca)
A_svd_abs = np.abs(A_svd)

adata = AnnData(A)

with warnings.catch_warnings(record=True) as record:
sc.pp.pca(adata, n_comps=4, zero_center=True, dtype="float64")
assert len(record) == 0, record
warnings.filterwarnings("error")
sc.pp.pca(adata, n_comps=4, zero_center=True, dtype="float64")

assert np.linalg.norm(A_pca_abs[:, :4] - np.abs(adata.obsm["X_pca"])) < 2e-05

with warnings.catch_warnings(record=True) as record:

def test_pca_transform_randomized(array_type):
adata = AnnData(array_type(A_list).astype("float32"))
A_pca_abs = np.abs(A_pca)

warnings.filterwarnings("error")
with (
pytest.warns(
UserWarning, match="svd_solver 'randomized' does not work with sparse input"
)
if sparse.issparse(adata.X)
else nullcontext()
):
sc.pp.pca(
adata,
n_comps=5,
Expand All @@ -211,21 +220,16 @@ def test_pca_transform(array_type):
dtype="float64",
random_state=14,
)
if sparse.issparse(A):
assert any(
isinstance(r.message, UserWarning)
and "svd_solver 'randomized' does not work with sparse input"
in str(r.message)
for r in record
)
else:
assert len(record) == 0

assert np.linalg.norm(A_pca_abs - np.abs(adata.obsm["X_pca"])) < 2e-05

with warnings.catch_warnings(record=True) as record:
sc.pp.pca(adata, n_comps=4, zero_center=False, dtype="float64", random_state=14)
assert len(record) == 0

def test_pca_transform_no_zero_center(array_type):
adata = AnnData(array_type(A_list).astype("float32"))
A_svd_abs = np.abs(A_svd)

warnings.filterwarnings("error")
sc.pp.pca(adata, n_comps=4, zero_center=False, dtype="float64", random_state=14)

assert np.linalg.norm(A_svd_abs[:, :4] - np.abs(adata.obsm["X_pca"])) < 2e-05

Expand Down
Loading