-
Notifications
You must be signed in to change notification settings - Fork 79
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TypeError: unsupported operand type(s) for |: 'NoneType' and 'NoneType' #53
Comments
issue seems to be with adding |
I see in the logs that you're using a globally installed Python interpreter. This could be a case of a misconfigured Python environment. Does this error still occur if you create a virtual environment, install all dependencies (including Pynguin), and run the same command? |
Hi @jordan-gillard . I an running on a Jenkins agent, so I don't need to setup a virtual env. Without the pandas import, it's ok, so I don't think that the issue is with Python. |
Retrieving type hints for numpy-related modules seem to raise TypeErrors inside the Python typing standard API. Since we do not know how to deal with them properly, we catch the errors, log them, and do not provide any hints at all.
I was able to reproduce and fix this particular issue in d811cac. However, there is yet another issue (at least on my machine) that causes failure: some Code that uses |
I have the same problem. command:
Output: [22:50:02] INFO Start Pynguin Test Generation… generator.py:107
INFO Collecting static constants from module under test generator.py:208
INFO Constants found: 207 generator.py:213
INFO Setting up runtime collection of constants generator.py:220
[22:50:06] INFO Stop Pynguin Test Generation… generator.py:110
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/bin/pynguin:8 in <module> │
│ │
│ 5 from pynguin.cli import main │
│ 6 if __name__ == '__main__': │
│ 7 │ sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) │
│ ❱ 8 │ sys.exit(main()) │
│ 9 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/cli.py:196 in main │
│ │
│ 193 │ set_configuration(parsed.config) │
│ 194 │ if console is not None: │
│ 195 │ │ with console.status("Running Pynguin..."): │
│ ❱ 196 │ │ │ return run_pynguin().value │
│ 197 │ else: │
│ 198 │ │ return run_pynguin().value │
│ 199 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:108 in run_pynguin │
│ │
│ 105 │ │
│ 106 │ try: │
│ 107 │ │ _LOGGER.info("Start Pynguin Test Generation…") │
│ ❱ 108 │ │ return _run() │
│ 109 │ finally: │
│ 110 │ │ _LOGGER.info("Stop Pynguin Test Generation…") │
│ 111 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:506 in _run │
│ │
│ 503 │
│ 504 │
│ 505 def _run() -> ReturnCode: │
│ ❱ 506 │ if (setup_result := _setup_and_check()) is None: │
│ 507 │ │ return ReturnCode.SETUP_FAILED │
│ 508 │ executor, test_cluster, constant_provider = setup_result │
│ 509 │ # traces slices for test cases after execution │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:258 in _setup_and_check │
│ │
│ 255 │ │
│ 256 │ # Analyzing the SUT should not cause any coverage. │
│ 257 │ tracer.disable() │
│ ❱ 258 │ if (test_cluster := _setup_test_cluster()) is None: │
│ 259 │ │ return None │
│ 260 │ tracer.enable() │
│ 261 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:114 in _setup_test_cluster │
│ │
│ 111 │
│ 112 │
│ 113 def _setup_test_cluster() -> ModuleTestCluster | None: │
│ ❱ 114 │ test_cluster = generate_test_cluster( │
│ 115 │ │ config.configuration.module_name, │
│ 116 │ │ config.configuration.type_inference.type_inference_strategy, │
│ 117 │ │ query_type4py=config.configuration.type_inference.type4py, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1442 in generate_test_cluster │
│ │
│ 1439 │ Returns: │
│ 1440 │ │ A new test cluster for the given module │
│ 1441 │ │
│ ❱ 1442 │ return analyse_module( │
│ 1443 │ │ parse_module(module_name, query_type4py=query_type4py), │
│ 1444 │ │ type_inference_strategy, │
│ 1445 │ │ query_type4py=query_type4py, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1418 in analyse_module │
│ │
│ 1415 │ │ A test cluster for the module │
│ 1416 │ │
│ 1417 │ test_cluster = ModuleTestCluster(linenos=parsed_module.linenos) │
│ ❱ 1418 │ __resolve_dependencies( │
│ 1419 │ │ root_module=parsed_module, │
│ 1420 │ │ type_inference_strategy=type_inference_strategy, │
│ 1421 │ │ test_cluster=test_cluster, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1291 in __resolve_dependencies │
│ │
│ 1288 │ │ │ continue │
│ 1289 │ │ │
│ 1290 │ │ # Analyze all classes found in the current module │
│ ❱ 1291 │ │ __analyse_included_classes( │
│ 1292 │ │ │ module=current_module, │
│ 1293 │ │ │ root_module_name=root_module.module_name, │
│ 1294 │ │ │ type_inference_strategy=type_inference_strategy, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1351 in __analyse_included_classes │
│ │
│ 1348 │ │ │
│ 1349 │ │ type_info = test_cluster.type_system.to_type_info(current) │
│ 1350 │ │ │
│ ❱ 1351 │ │ __analyse_class( │
│ 1352 │ │ │ type_info=type_info, │
│ 1353 │ │ │ type_inference_strategy=type_inference_strategy, │
│ 1354 │ │ │ module_tree=parse_results[current.__module__].syntax_tree, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1141 in __analyse_class │
│ │
│ 1138 │ for method_name, method in inspect.getmembers( │
│ 1139 │ │ type_info.raw_type, inspect.isfunction │
│ 1140 │ ): │
│ ❱ 1141 │ │ __analyse_method( │
│ 1142 │ │ │ type_info=type_info, │
│ 1143 │ │ │ method_name=method_name, │
│ 1144 │ │ │ method=method, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1213 in __analyse_method │
│ │
│ 1210 │ │ return │
│ 1211 │ │
│ 1212 │ LOGGER.debug("Analysing method %s.%s", type_info.full_name, method_name) │
│ ❱ 1213 │ inferred_signature = test_cluster.type_system.infer_type_info( │
│ 1214 │ │ method, │
│ 1215 │ │ type4py_data=find_predicted_signature( │
│ 1216 │ │ │ type4py_data, type_info.qualname + "." + method_name, type_info.qualname │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/typesystem.py:1526 in infer_type_info │
│ │
│ 1523 │ │ │
│ 1524 │ │ match type_inference_strategy: │
│ 1525 │ │ │ case config.TypeInferenceStrategy.TYPE_HINTS: │
│ ❱ 1526 │ │ │ │ return self.infer_signature( │
│ 1527 │ │ │ │ │ method, type4py_data, self.type_hints_provider │
│ 1528 │ │ │ │ ) │
│ 1529 │ │ │ case config.TypeInferenceStrategy.NONE: │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/typesystem.py:1589 in infer_signature │
│ │
│ 1586 │ │ │ The inference result │
│ 1587 │ │ │
│ 1588 │ │ method_signature = inspect.signature(method) │
│ ❱ 1589 │ │ hints = type_hint_provider(method) │
│ 1590 │ │ parameters: dict[str, ProperType] = {} │
│ 1591 │ │ type4py_parameters: dict[str, list[ProperType]] = {} │
│ 1592 │ │ type4py_parameters_for_statistics: dict[str, list[ProperType]] = {} │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/typesystem.py:1561 in type_hints_provider │
│ │
│ 1558 │ │ │ A dict mapping parameter names to type hints. │
│ 1559 │ │ │
│ 1560 │ │ try: │
│ ❱ 1561 │ │ │ hints = get_type_hints(method) │
│ 1562 │ │ │ # Sadly there is no guarantee that resolving the type hints actually works. │
│ 1563 │ │ │ # If the developers annotated something with an erroneous type hint we fall │
│ 1564 │ │ │ # back to no type hints, i.e., use Any. │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/typing.py:1849 in │
│ get_type_hints │
│ │
│ 1846 │ │ │ │ is_argument=not isinstance(obj, types.ModuleType), │
│ 1847 │ │ │ │ is_class=False, │
│ 1848 │ │ │ ) │
│ ❱ 1849 │ │ value = _eval_type(value, globalns, localns) │
│ 1850 │ │ if name in defaults and defaults[name] is None: │
│ 1851 │ │ │ value = Optional[value] │
│ 1852 │ │ hints[name] = value │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/typing.py:326 in _eval_type │
│ │
│ 323 │ with recursive ForwardRef. │
│ 324 │ │
│ 325 │ if isinstance(t, ForwardRef): │
│ ❱ 326 │ │ return t._evaluate(globalns, localns, recursive_guard) │
│ 327 │ if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): │
│ 328 │ │ ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__a │
│ 329 │ │ if ev_args == t.__args__: │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/typing.py:691 in _evaluate │
│ │
│ 688 │ │ │ │ │ sys.modules.get(self.__forward_module__, None), '__dict__', globalns │
│ 689 │ │ │ │ ) │
│ 690 │ │ │ type_ = _type_check( │
│ ❱ 691 │ │ │ │ eval(self.__forward_code__, globalns, localns), │
│ 692 │ │ │ │ "Forward references must evaluate to types.", │
│ 693 │ │ │ │ is_argument=self.__forward_is_argument__, │
│ 694 │ │ │ │ is_class=self.__forward_is_class__, │
│ in <module>:1 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
TypeError: unsupported operand type(s) for |: 'NoneType' and 'NoneType'
|
As explained in #53 (comment), in the same way as d811cac I added TypeError in the except @staticmethod
def type_hints_provider(method: Callable) -> dict[str, Any]:
"""Provides PEP484-style type information, if available.
Args:
method: The method for which we want type hints.
Returns:
A dict mapping parameter names to type hints.
"""
try:
hints = get_type_hints(method)
# Sadly there is no guarantee that resolving the type hints actually works.
# If the developers annotated something with an erroneous type hint we fall
# back to no type hints, i.e., use Any.
# The import used in the type hint could also be conditional on
# typing.TYPE_CHECKING, e.g., to avoid circular imports, in which case this
# also fails.
except (AttributeError, NameError, TypeError):
hints = {}
return hints But I encountered another problem: [23:20:47] INFO Start Pynguin Test Generation… generator.py:107
INFO Collecting static constants from module under test generator.py:208
INFO Constants found: 207 generator.py:213
INFO Setting up runtime collection of constants generator.py:220
[23:20:59] INFO Stop Pynguin Test Generation… generator.py:110
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/bin/pynguin:8 in <module> │
│ │
│ 5 from pynguin.cli import main │
│ 6 if __name__ == '__main__': │
│ 7 │ sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) │
│ ❱ 8 │ sys.exit(main()) │
│ 9 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/cli.py:196 in main │
│ │
│ 193 │ set_configuration(parsed.config) │
│ 194 │ if console is not None: │
│ 195 │ │ with console.status("Running Pynguin..."): │
│ ❱ 196 │ │ │ return run_pynguin().value │
│ 197 │ else: │
│ 198 │ │ return run_pynguin().value │
│ 199 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:108 in run_pynguin │
│ │
│ 105 │ │
│ 106 │ try: │
│ 107 │ │ _LOGGER.info("Start Pynguin Test Generation…") │
│ ❱ 108 │ │ return _run() │
│ 109 │ finally: │
│ 110 │ │ _LOGGER.info("Stop Pynguin Test Generation…") │
│ 111 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:506 in _run │
│ │
│ 503 │
│ 504 │
│ 505 def _run() -> ReturnCode: │
│ ❱ 506 │ if (setup_result := _setup_and_check()) is None: │
│ 507 │ │ return ReturnCode.SETUP_FAILED │
│ 508 │ executor, test_cluster, constant_provider = setup_result │
│ 509 │ # traces slices for test cases after execution │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:258 in _setup_and_check │
│ │
│ 255 │ │
│ 256 │ # Analyzing the SUT should not cause any coverage. │
│ 257 │ tracer.disable() │
│ ❱ 258 │ if (test_cluster := _setup_test_cluster()) is None: │
│ 259 │ │ return None │
│ 260 │ tracer.enable() │
│ 261 │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/generator.py:114 in _setup_test_cluster │
│ │
│ 111 │
│ 112 │
│ 113 def _setup_test_cluster() -> ModuleTestCluster | None: │
│ ❱ 114 │ test_cluster = generate_test_cluster( │
│ 115 │ │ config.configuration.module_name, │
│ 116 │ │ config.configuration.type_inference.type_inference_strategy, │
│ 117 │ │ query_type4py=config.configuration.type_inference.type4py, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1442 in generate_test_cluster │
│ │
│ 1439 │ Returns: │
│ 1440 │ │ A new test cluster for the given module │
│ 1441 │ │
│ ❱ 1442 │ return analyse_module( │
│ 1443 │ │ parse_module(module_name, query_type4py=query_type4py), │
│ 1444 │ │ type_inference_strategy, │
│ 1445 │ │ query_type4py=query_type4py, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1418 in analyse_module │
│ │
│ 1415 │ │ A test cluster for the module │
│ 1416 │ │
│ 1417 │ test_cluster = ModuleTestCluster(linenos=parsed_module.linenos) │
│ ❱ 1418 │ __resolve_dependencies( │
│ 1419 │ │ root_module=parsed_module, │
│ 1420 │ │ type_inference_strategy=type_inference_strategy, │
│ 1421 │ │ test_cluster=test_cluster, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1291 in __resolve_dependencies │
│ │
│ 1288 │ │ │ continue │
│ 1289 │ │ │
│ 1290 │ │ # Analyze all classes found in the current module │
│ ❱ 1291 │ │ __analyse_included_classes( │
│ 1292 │ │ │ module=current_module, │
│ 1293 │ │ │ root_module_name=root_module.module_name, │
│ 1294 │ │ │ type_inference_strategy=type_inference_strategy, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1351 in __analyse_included_classes │
│ │
│ 1348 │ │ │
│ 1349 │ │ type_info = test_cluster.type_system.to_type_info(current) │
│ 1350 │ │ │
│ ❱ 1351 │ │ __analyse_class( │
│ 1352 │ │ │ type_info=type_info, │
│ 1353 │ │ │ type_inference_strategy=type_inference_strategy, │
│ 1354 │ │ │ module_tree=parse_results[current.__module__].syntax_tree, │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/module.py:1108 in __analyse_class │
│ │
│ 1105 │ else: │
│ 1106 │ │ generic = GenericConstructor( │
│ 1107 │ │ │ type_info, │
│ ❱ 1108 │ │ │ test_cluster.type_system.infer_type_info( │
│ 1109 │ │ │ │ type_info.raw_type.__init__, │
│ 1110 │ │ │ │ type4py_data=find_predicted_signature( │
│ 1111 │ │ │ │ │ type4py_data, type_info.qualname + ".__init__", type_info.qualname │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/typesystem.py:1526 in infer_type_info │
│ │
│ 1523 │ │ │
│ 1524 │ │ match type_inference_strategy: │
│ 1525 │ │ │ case config.TypeInferenceStrategy.TYPE_HINTS: │
│ ❱ 1526 │ │ │ │ return self.infer_signature( │
│ 1527 │ │ │ │ │ method, type4py_data, self.type_hints_provider │
│ 1528 │ │ │ │ ) │
│ 1529 │ │ │ case config.TypeInferenceStrategy.NONE: │
│ │
│ /Users/ncdaam/PycharmProjects/LogicalCouplingTool/.venv_3.10/lib/python3.10/site-packages/pyngui │
│ n/analyses/typesystem.py:1588 in infer_signature │
│ │
│ 1585 │ │ Returns: │
│ 1586 │ │ │ The inference result │
│ 1587 │ │ │
│ ❱ 1588 │ │ method_signature = inspect.signature(method) │
│ 1589 │ │ hints = type_hint_provider(method) │
│ 1590 │ │ parameters: dict[str, ProperType] = {} │
│ 1591 │ │ type4py_parameters: dict[str, list[ProperType]] = {} │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/inspect.py:3247 in signature │
│ │
│ 3244 │
│ 3245 def signature(obj, *, follow_wrapped=True, globals=None, locals=None, eval_str=False): │
│ 3246 │ """Get a signature object for the passed callable.""" │
│ ❱ 3247 │ return Signature.from_callable(obj, follow_wrapped=follow_wrapped, │
│ 3248 │ │ │ │ │ │ │ │ globals=globals, locals=locals, eval_str=eval_str) │
│ 3249 │
│ 3250 │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/inspect.py:2995 in │
│ from_callable │
│ │
│ 2992 │ def from_callable(cls, obj, *, │
│ 2993 │ │ │ │ │ follow_wrapped=True, globals=None, locals=None, eval_str=False): │
│ 2994 │ │ """Constructs Signature for the given callable object.""" │
│ ❱ 2995 │ │ return _signature_from_callable(obj, sigcls=cls, │
│ 2996 │ │ │ │ │ │ │ │ │ │ follow_wrapper_chains=follow_wrapped, │
│ 2997 │ │ │ │ │ │ │ │ │ │ globals=globals, locals=locals, eval_str=eval_st │
│ 2998 │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/inspect.py:2461 in │
│ _signature_from_callable │
│ │
│ 2458 │ │ │ │ │ │ │ │ │ │ globals=globals, locals=locals, eval_str=eval_st │
│ 2459 │ │
│ 2460 │ if _signature_is_builtin(obj): │
│ ❱ 2461 │ │ return _signature_from_builtin(sigcls, obj, │
│ 2462 │ │ │ │ │ │ │ │ │ skip_bound_arg=skip_bound_arg) │
│ 2463 │ │
│ 2464 │ if isinstance(obj, functools.partial): │
│ │
│ /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/inspect.py:2271 in │
│ _signature_from_builtin │
│ │
│ 2268 │ │
│ 2269 │ s = getattr(func, "__text_signature__", None) │
│ 2270 │ if not s: │
│ ❱ 2271 │ │ raise ValueError("no signature found for builtin {!r}".format(func)) │
│ 2272 │ │
│ 2273 │ return _signature_fromstr(cls, func, s, skip_bound_arg) │
│ 2274 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
ValueError: no signature found for builtin <slot wrapper '__init__' of 'pandas._libs.interval.IntervalTree' objects> |
Wow, yet another exception from deep within the |
Fixed changing the import (issue related to #35). From import pandas to from pandas import DataFrame Maybe could be useful adding this in the doc. |
While I expect that this would mitigate the issue, I'd probably not consider it a fix that would work in practice. The reason why it's working is due to Python's import system: The problem I have with this, and that's why I do not think, it's good to put it into the documentation, is that almost every tutorial in the world that I've seen and that is using Pandas has the line |
Yes, but in the meantime those using Pynguin may have information on a workaround to generate test cases even if pandas is used in production code. P.s (.venv_3.10) (base) ncdaam@vkwmr6cjkv-mac LogicalCouplingTool % pynguin --project-path . --output-path ./tests/developer_coupling/ --module-name coupling.developer_coupling -v
[12:26:51] INFO Start Pynguin Test Generation… generator.py:107
INFO Collecting static constants from module under test generator.py:208
INFO Constants found: 206 generator.py:213
INFO Setting up runtime collection of constants generator.py:220
[12:26:58] INFO Analyzed project to create test cluster module.py:1318
INFO Modules: 49 module.py:1319
INFO Functions: 109 module.py:1320
INFO Classes: 166 module.py:1321
INFO Using seed 1706700409493336000 generator.py:194
INFO Using strategy: Algorithm.DYNAMOSA generationalgorithmfactory.py:302
INFO Instantiated 47 fitness functions generationalgorithmfactory.py:393
INFO Using CoverageArchive generationalgorithmfactory.py:346
INFO Using selection function: Selection.TOURNAMENT_SELECTION generationalgorithmfactory.py:321
INFO No stopping condition configured! generationalgorithmfactory.py:119
INFO Using fallback timeout of 600 seconds generationalgorithmfactory.py:120
INFO Using crossover function: SinglePointRelativeCrossOver generationalgorithmfactory.py:334
INFO Using ranking function: RankBasedPreferenceSorting generationalgorithmfactory.py:354
INFO Start generating test cases generator.py:517
INFO Initial Population, Coverage: 0.063830 searchobserver.py:77
INFO Iteration: 1, Coverage: 0.063830 searchobserver.py:83
INFO Iteration: 2, Coverage: 0.063830 searchobserver.py:83
INFO Iteration: 3, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 4, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 5, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 6, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 7, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 8, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 9, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 10, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 11, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 12, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 13, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 14, Coverage: 0.085106 searchobserver.py:83
[12:27:04] INFO Iteration: 15, Coverage: 0.085106 searchobserver.py:83
INFO Iteration: 16, Coverage: 0.085106 searchobserver.py:83
[12:27:05] INFO Iteration: 17, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 18, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 19, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 20, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 21, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 22, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 23, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 24, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 25, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 26, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 27, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 28, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 29, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 30, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 31, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 32, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 33, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 34, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 35, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 36, Coverage: 0.106383 searchobserver.py:83
[12:27:13] INFO Iteration: 37, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 38, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 39, Coverage: 0.106383 searchobserver.py:83
[12:27:15] INFO Iteration: 40, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 41, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 42, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 43, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 44, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 45, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 46, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 47, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 48, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 49, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 50, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 51, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 52, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 53, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 54, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 55, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 56, Coverage: 0.106383 searchobserver.py:83
[12:27:22] INFO Iteration: 57, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 58, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 59, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 60, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 61, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 62, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 63, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 64, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 65, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 66, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 67, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 68, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 69, Coverage: 0.106383 searchobserver.py:83
[12:27:26] INFO Iteration: 70, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 71, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 72, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 73, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 74, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 75, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 76, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 77, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 78, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 79, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 80, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 81, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 82, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 83, Coverage: 0.106383 searchobserver.py:83
[12:27:30] INFO Iteration: 84, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 85, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 86, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 87, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 88, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 89, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 90, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 91, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 92, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 93, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 94, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 95, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 96, Coverage: 0.106383 searchobserver.py:83
INFO Iteration: 97, Coverage: 0.170213 searchobserver.py:83
INFO Iteration: 98, Coverage: 0.170213 searchobserver.py:83
INFO Iteration: 99, Coverage: 0.170213 searchobserver.py:83
INFO Iteration: 100, Coverage: 0.170213 searchobserver.py:83
INFO Iteration: 101, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 102, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 103, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 104, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 105, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 106, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 107, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 108, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 109, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 110, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 111, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 112, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 113, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 114, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 115, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 116, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 117, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 118, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 119, Coverage: 0.191489 searchobserver.py:83
[12:27:44] INFO Iteration: 120, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 121, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 122, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 123, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 124, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 125, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 126, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 127, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 128, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 129, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 130, Coverage: 0.191489 searchobserver.py:83
INFO Iteration: 131, Coverage: 0.212766 searchobserver.py:83
INFO Iteration: 132, Coverage: 0.212766 searchobserver.py:83
[12:27:51] INFO Iteration: 133, Coverage: 0.212766 searchobserver.py:83
INFO Iteration: 134, Coverage: 0.212766 searchobserver.py:83
INFO Iteration: 135, Coverage: 0.212766 searchobserver.py:83
INFO Iteration: 136, Coverage: 0.212766 searchobserver.py:83
[12:27:55] INFO Iteration: 137, Coverage: 0.212766 searchobserver.py:83
[12:27:56] INFO Iteration: 138, Coverage: 0.212766 searchobserver.py:83
INFO Iteration: 139, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 140, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 141, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 142, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 143, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 144, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 145, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 146, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 147, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 148, Coverage: 0.276596 searchobserver.py:83
INFO Iteration: 149, Coverage: 0.361702 searchobserver.py:83
INFO Iteration: 150, Coverage: 0.361702 searchobserver.py:83
INFO Iteration: 151, Coverage: 0.361702 searchobserver.py:83
INFO Iteration: 152, Coverage: 0.361702 searchobserver.py:83
INFO Iteration: 153, Coverage: 0.361702 searchobserver.py:83
INFO Iteration: 154, Coverage: 0.361702 searchobserver.py:83
⠹ Running Pynguin... |
completely agree with you, this is how pandas is most often imported. It happens a lot in our code, so this is how I spotted the issue originally. |
@stephanlukasczyk I tried the release 0.35.0. When I am using pandas and numpy inside
|
OK, so this becomes even more strange. Using an absolutely minimal example import numpy as pd
import pandas as pd
def foo(a: int) -> int:
return a with Pynguin 0.35.0 and Python 3.10.13 on an Intel Mac works like a charm. No warning, no errors, one test case. Using the example from your initial posting lets Pynguin start, it then yields some warnings/errors:
However, it continues further, yields information about the collected modules, functions, and classes, and starts generating tests. Then, the Python crashes with some call stack. Hence, I cannot directly replicate your issue, but I'll try on other machines whether I can reproduce it there. With this, I'll reopen the issue because it definitely needs further investigation, although I need to admit that I currently have no real idea on what the actual cause of the problem is and how to fix it. I'll keep you updated. |
Interesting observation: if I run the exact same thing on a Debian 12.5 machine, I also get the aforementioned warning and error messages in the log output, however, there is no crash and Pynguin generates a (more or less reasonable) test case: # Test cases automatically generated by Pynguin (https://www.pynguin.eu).
# Please check them before you use them.
import pytest
import hello as module_0
def test_case_0:
filter_correlated_features_0 = module_0.FilterCorrelatedFeatures()
assert filter_correlated_features_0.corr_threshold == pytest.approx(
0.8, abs=0.01, rel=0.01
)
filter_correlated_features_1 = module_0.FilterCorrelatedFeatures(
filter_correlated_features_0
) Unfortunately, I do not have any Windows machine to figure out whether it is something Windows specific 😞 Perhaps, if I find the issue on macOS, it could fix the issue on Windows, too. Edit: Additional library version: |
I ran the minimal example and got the same error, that I posted before (AttributeError: 'NoneType' object has no attribute 'startswith'). When moving the imports under the in the former case, importlib seems to not get any module name, so name is None. Windows 11 Intel Core |
OK, I can reproduce the issue on Linux, when using the Python, numpy, and pandas versions you've mentioned. I'll keep you updated. |
If it helps you out, I upgraded my pandas and numpy to your versions (only change) and now I get the same success when the imports are inside the def. When I move them outside the def (first 2 lines in the file), I now get a unit test, but during the run I get these errors, similar to what you got:
|
note: if I comment out pandas (leaving only the numpy import), I don't get the above error. using above and here your minimal example @stephanlukasczyk |
Describe the bug
Error when generating tests:
TypeError: unsupported operand type(s) for |: 'NoneType' and 'NoneType'
To Reproduce
Steps to reproduce the behaviour:
Use the following command line arguments to Pynguin:
python -m pynguin --output-path . -v --project-path src/data_preprocessing/ --module-name hello
Give the error (stack trace, etc) you are encountering: '...'
pynguin-log.txt
Expected behavior
generate a simple test.
Screenshots
NA
Software Version (please complete the following information):
The text was updated successfully, but these errors were encountered: