Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

convert pytorch weights to keras #16

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 18 additions & 18 deletions keras_centernet/models/networks/hourglass.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,11 +77,11 @@ def HourglassNetwork(heads, num_stacks, cnv_dim=256, inres=(512, 512), weights='
_heads, inter = hourglass_module(heads, inter, cnv_dim, i, dims)
outputs.extend(_heads)
if i < num_stacks - 1:
inter_ = Conv2D(cnv_dim, 1, use_bias=False, name='inter_.%d.0' % i)(prev_inter)
inter_ = BatchNormalization(epsilon=1e-5, name='inter_.%d.1' % i)(inter_)
inter_ = Conv2D(cnv_dim, 1, use_bias=False, name='inters_.%d.0' % i)(prev_inter)
inter_ = BatchNormalization(epsilon=1e-5, name='inters_.%d.1' % i)(inter_)

cnv_ = Conv2D(cnv_dim, 1, use_bias=False, name='cnv_.%d.0' % i)(inter)
cnv_ = BatchNormalization(epsilon=1e-5, name='cnv_.%d.1' % i)(cnv_)
cnv_ = Conv2D(cnv_dim, 1, use_bias=False, name='cnvs_.%d.0' % i)(inter)
cnv_ = BatchNormalization(epsilon=1e-5, name='cnvs_.%d.1' % i)(cnv_)

inter = Add(name='inters.%d.inters.add' % i)([inter_, cnv_])
inter = Activation('relu', name='inters.%d.inters.relu' % i)(inter)
Expand All @@ -103,7 +103,7 @@ def HourglassNetwork(heads, num_stacks, cnv_dim=256, inres=(512, 512), weights='
file_hash='5c562ee22dc383080629dae975f269d62de3a41da6fd0c821085fbee183d555d')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
model.load_weights(weights,by_name=True)

return model

Expand Down Expand Up @@ -143,9 +143,9 @@ def residual(_x, out_dim, name, stride=1):
_x = BatchNormalization(epsilon=1e-5, name=name + '.bn2')(_x)

if num_channels != out_dim or stride != 1:
shortcut = Conv2D(out_dim, 1, strides=stride, use_bias=False, name=name + '.shortcut.0')(
shortcut = Conv2D(out_dim, 1, strides=stride, use_bias=False, name=name + '.skip.0')(
shortcut)
shortcut = BatchNormalization(epsilon=1e-5, name=name + '.shortcut.1')(shortcut)
shortcut = BatchNormalization(epsilon=1e-5, name=name + '.skip.1')(shortcut)

_x = Add(name=name + '.add')([_x, shortcut])
_x = Activation('relu', name=name + '.relu')(_x)
Expand All @@ -167,29 +167,29 @@ def left_features(bottom, hgid, dims):
for kk, nh in enumerate(dims):
pow_str = ''
for _ in range(kk):
pow_str += '.center'
_x = residual(features[-1], nh, name='kps.%d%s.down.0' % (hgid, pow_str), stride=2)
_x = residual(_x, nh, name='kps.%d%s.down.1' % (hgid, pow_str))
pow_str += '.low2'
_x = residual(features[-1], nh, name='kps.%d%s.low1.0' % (hgid, pow_str), stride=2)
_x = residual(_x, nh, name='kps.%d%s.low1.1' % (hgid, pow_str))
features.append(_x)
return features


def connect_left_right(left, right, num_channels, num_channels_next, name):
# left: 2 residual modules
left = residual(left, num_channels_next, name=name + 'skip.0')
left = residual(left, num_channels_next, name=name + 'skip.1')
left = residual(left, num_channels_next, name=name + 'up1.0')
left = residual(left, num_channels_next, name=name + 'up1.1')

# up: 2 times residual & nearest neighbour
out = residual(right, num_channels, name=name + 'out.0')
out = residual(out, num_channels_next, name=name + 'out.1')
out = UpSampling2D(name=name + 'out.upsampleNN')(out)
out = Add(name=name + 'out.add')([left, out])
out = residual(right, num_channels, name=name + 'low3.0')
out = residual(out, num_channels_next, name=name + 'low3.1')
out = UpSampling2D(name=name + 'low3.upsampleNN')(out)
out = Add(name=name + 'low3.add')([left, out])
return out


def bottleneck_layer(_x, num_channels, hgid):
# 4 residual blocks with 512 channels in the middle
pow_str = 'center.' * 5
pow_str = 'low2.' * 5
_x = residual(_x, num_channels, name='kps.%d.%s0' % (hgid, pow_str))
_x = residual(_x, num_channels, name='kps.%d.%s1' % (hgid, pow_str))
_x = residual(_x, num_channels, name='kps.%d.%s2' % (hgid, pow_str))
Expand All @@ -202,7 +202,7 @@ def right_features(leftfeatures, hgid, dims):
for kk in reversed(range(len(dims))):
pow_str = ''
for _ in range(kk):
pow_str += 'center.'
pow_str += 'low2.'
rf = connect_left_right(leftfeatures[kk], rf, dims[kk], dims[max(kk - 1, 0)], name='kps.%d.%s' % (hgid, pow_str))
return rf

Expand Down
95 changes: 95 additions & 0 deletions pytorch2keras.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import torch
from keras.models import *

from keras_centernet.models.decode import CtDetDecode
from keras_centernet.models.networks.hourglass import HourglassNetwork

K.set_learning_phase(0)

def convert_weights_to_keras(keras_model,py_state_dict):
for i, layer in enumerate(keras_model.layers):
if len(layer.weights) > 0:
if 'conv' in layer.name or 'skip.0' in layer.name or 'cnvs_.0.0' in layer.name or 'inters_.0.0' in layer.name:
layer_weights_name="{}.weight".format(layer.name)

weight_size = len(py_state_dict['state_dict'][layer_weights_name].size())
transpose_dims = []

for j in range(weight_size):
transpose_dims.append(weight_size - j - 1)
'''exchange the first two dim,o: [out_c, in_c, k_h, k_w]
Keras: [k_h, k_w, in_c, out_c]
'''
transpose_dims[0],transpose_dims[1] = transpose_dims[1],transpose_dims[0]

weights=py_state_dict['state_dict'][layer_weights_name].numpy().transpose(transpose_dims)
if layer.use_bias:
layer_bias_name = "{}.bias".format(layer.name)
bias = py_state_dict['state_dict'][layer_bias_name].numpy()
keras_model.layers[i].set_weights([weights,bias])
else:
keras_model.layers[i].set_weights([weights])
print("load {} weights".format(layer.name))
elif 'bn' in layer.name or 'skip.1' in layer.name or 'cnvs_.0.1' in layer.name or 'inters_.0.1' in layer.name:
layer_weight_name="{}.weight".format(layer.name)
layer_bias_name="{}.bias".format(layer.name)
layer_mean_name="{}.running_mean".format(layer.name)
layer_var_name="{}.running_var".format(layer.name)
keras_model.layers[i].set_weights([py_state_dict['state_dict'][layer_weight_name].numpy(),
py_state_dict['state_dict'][layer_bias_name].numpy(),
py_state_dict['state_dict'][layer_mean_name].numpy(),
py_state_dict['state_dict'][layer_var_name].numpy()])
print("load {} weights".format(layer.name))
elif 'hm' in layer.name or 'wh' in layer.name or 'reg' in layer.name:
layer_weight_name = "{}.weight".format(layer.name)
layer_bias_name = "{}.bias".format(layer.name)

weight_size = len(py_state_dict['state_dict'][layer_weight_name].size())
transpose_dims = []

for j in range(weight_size):
transpose_dims.append(weight_size - j - 1)

transpose_dims[0], transpose_dims[1] = transpose_dims[1], transpose_dims[0]

keras_model.layers[i].set_weights([py_state_dict['state_dict'][layer_weight_name].numpy().transpose(transpose_dims),
py_state_dict['state_dict'][layer_bias_name].numpy()])
print("load {} weights".format(layer.name))


"""
Create hourglass_model
"""


kwargs = {
'num_stacks': 2,
'cnv_dim': 256,
'weights': None,
'inres': (512,512),
}
heads = {
'hm': 1,
'reg': 2,
'wh': 2
}
keras_model = HourglassNetwork(heads=heads, **kwargs)
keras_model = CtDetDecode(keras_model)

keras_model.summary()
"""
load the weights from model_best.pth,I trained the centernet with official PyTorch code,and the classes is 1
"""
py_model = torch.load("model_best.pth",map_location=torch.device('cpu'))

"""
convert and load weitghts to the keras model
"""
convert_weights_to_keras(keras_model,py_model)

# Save the weights of the converted keras model for later use
keras_model.save_weights("cenetnet_hg.h5")