Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Offline LLM Engine Benchmark Throughput #1968

Merged
merged 35 commits into from
Nov 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
35 commits
Select commit Hold shift + click to select a range
807a3f0
add offline engine bench
zolinthecow Nov 9, 2024
e3ec623
llm_engine -> engine
zolinthecow Nov 9, 2024
8b1232b
add to unit test bench
zolinthecow Nov 9, 2024
e6293a8
first draft bench offline throughput
zolinthecow Nov 11, 2024
5564a96
script works
zolinthecow Nov 11, 2024
0078bc3
reset bench serving stuff
zolinthecow Nov 11, 2024
9f6c31a
merge
zolinthecow Nov 11, 2024
3158414
most recent commit?
zolinthecow Nov 11, 2024
550ec14
restore test utils
zolinthecow Nov 11, 2024
a6b183e
Merge branch 'main' into benchmark-script
zolinthecow Nov 11, 2024
c1c6226
lint
zolinthecow Nov 11, 2024
1895c79
use sharegpt from bench_serving
zolinthecow Nov 12, 2024
3c8faf9
add unit test
zolinthecow Nov 12, 2024
170c83f
lint
zolinthecow Nov 12, 2024
696dd95
add support for runtime backend + dataclass generic args
zolinthecow Nov 12, 2024
21b6ed5
push not being processed?
zolinthecow Nov 12, 2024
0589a6b
lint
zolinthecow Nov 12, 2024
383b6d1
fix benches
zolinthecow Nov 13, 2024
8db0340
lint
zolinthecow Nov 13, 2024
568ce97
Merge branch 'main' into benchmark-script
zolinthecow Nov 13, 2024
c6a6827
add review
ByronHsu Nov 13, 2024
ed1a133
address todos
zolinthecow Nov 13, 2024
c485dbe
not sure how the tuple stuff got there
zolinthecow Nov 13, 2024
3565766
Merge branch 'main' into benchmark-script
zolinthecow Nov 13, 2024
fd2d04d
fix
zolinthecow Nov 13, 2024
ea3b60a
fix
zolinthecow Nov 13, 2024
732e3ba
lint
zolinthecow Nov 13, 2024
41aad44
format benchmark + add diff metrics
zolinthecow Nov 14, 2024
fa76ac9
lint
zolinthecow Nov 14, 2024
cc2a5c5
fix script
zolinthecow Nov 14, 2024
e1045e4
fix test
zolinthecow Nov 14, 2024
4a322a3
fix
zolinthecow Nov 14, 2024
ef4f278
remove useless try except
zolinthecow Nov 14, 2024
df9da2e
fix test and move logging
ByronHsu Nov 15, 2024
d5fa88c
Merge branch 'main' into benchmark-script
ByronHsu Nov 15, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
305 changes: 305 additions & 0 deletions python/sglang/bench_offline_throughput.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
"""
Benchmark the throughput of using the offline LLM engine.
This script does not launch a server.
It accepts the same arguments as launch_server.py and additional benchmark arguments

# Usage
## Sharegpt dataset with default args
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct

## Random dataset with default args
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct --dataset-name random

## Shared prefix dataset with default args
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct --dataset-name generated-shared-prefix

## Sharegpt dataset on runtime backend
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct --backend runtime
"""

import argparse
import dataclasses
import json
import logging
import random
import time
from typing import List, Tuple

import numpy as np

from sglang.api import Engine
from sglang.bench_serving import (
get_dataset,
get_tokenizer,
sample_random_requests,
set_ulimit,
)
from sglang.srt.server import Runtime
from sglang.srt.server_args import ServerArgs


@dataclasses.dataclass
class BenchArgs:
backend: str = "engine"
result_filename: str = ""
dataset_name: str = "sharegpt"
dataset_path: str = ""
num_prompts: int = 1000
sharegpt_output_len: int = 256
random_input_len: int = 256
random_output_len: int = 256
random_range_ratio: float = 0.0
gen_num_groups: int = 8
gen_prompts_per_group: int = 16
gen_system_prompt_len: int = 128
gen_question_len: int = 256
disable_ignore_eos: bool = False
seed: int = 1

@staticmethod
def add_cli_args(parser: argparse.ArgumentParser):
parser.add_argument("--backend", type=str, default=BenchArgs.backend)
parser.add_argument(
"--result-filename", type=str, default=BenchArgs.result_filename
)
parser.add_argument(
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "random", "generated-shared-prefix"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument(
"--dataset-path", type=str, default="", help="Path to the dataset."
)
parser.add_argument(
"--num-prompts",
type=int,
default=BenchArgs.num_prompts,
help="Number of prompts to process. Default is 1000.",
)
parser.add_argument(
"--sharegpt-output-len",
type=int,
default=BenchArgs.sharegpt_output_len,
help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
)
parser.add_argument(
"--random-input-len",
type=int,
default=BenchArgs.random_input_len,
help="Number of input tokens per request, used only for random dataset.",
)
parser.add_argument(
"--random-output-len",
type=int,
default=BenchArgs.random_output_len,
help="Number of output tokens per request, used only for random dataset.",
)
parser.add_argument(
"--random-range-ratio",
type=float,
default=BenchArgs.random_range_ratio,
help="Range of sampled ratio of input/output length, "
"used only for random dataset.",
)
parser.add_argument(
"--gen-num-groups",
type=int,
default=BenchArgs.gen_num_groups,
help="Number of groups with shared prefix, used"
"only for generate-shared-prefix",
)
parser.add_argument(
"--gen-prompts-per-group",
type=int,
default=BenchArgs.gen_prompts_per_group,
help="Number of prompts per group of shared prefix, used"
"only for generate-shared-prefix",
)
parser.add_argument(
"--gen-system-prompt-len",
type=int,
default=BenchArgs.gen_system_prompt_len,
help="System prompt length, used" "only for generate-shared-prefix",
)
parser.add_argument(
"--gen-question-len",
type=int,
default=BenchArgs.gen_question_len,
help="Question length, used" "only for generate-shared-prefix",
)
parser.add_argument(
"--disable-ignore-eos",
type=bool,
default=BenchArgs.disable_ignore_eos,
help="Disable ignore EOS token",
)
parser.add_argument("--seed", type=int, default=1, help="The random seed.")

@classmethod
def from_cli_args(cls, args: argparse.Namespace):
# use the default value's type to case the args into correct types.
attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)]
print(attrs)
return cls(
**{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs}
)


def throughput_test_once(
backend_name: str,
backend,
reqs: List[Tuple[str, int, int]],
ignore_eos: bool,
):
measurement_results = {
"backend": backend_name,
"successful_requests": len(reqs),
"total_latency": -1,
"total_input_tokens": sum(r[1] for r in reqs),
"total_output_tokens": -1,
"request_throughput": -1,
"input_throughput": -1,
"output_throughput": -1,
"total_throughput": -1,
}

prompt = [r[0] for r in reqs]
sampling_params = [
{
"temperature": 0,
"max_new_tokens": r[2],
"ignore_eos": ignore_eos,
}
for r in reqs
]

st = time.perf_counter()
gen_out = backend.generate(prompt=prompt, sampling_params=sampling_params)
latency = time.perf_counter() - st

if backend_name == "runtime":
gen_out = json.loads(gen_out)

measurement_results["total_latency"] = latency
measurement_results["total_output_tokens"] = sum(
o["meta_info"]["completion_tokens"] for o in gen_out
)
measurement_results["request_throughput"] = (
measurement_results["successful_requests"] / latency
)
measurement_results["input_throughput"] = (
measurement_results["total_input_tokens"] / latency
)
measurement_results["output_throughput"] = (
measurement_results["total_output_tokens"] / latency
)
measurement_results["total_throughput"] = (
measurement_results["total_input_tokens"]
+ measurement_results["total_output_tokens"]
) / latency

return measurement_results


def throughput_test(
server_args: ServerArgs,
bench_args: BenchArgs,
):
if bench_args.backend == "engine":
backend = Engine(**dataclasses.asdict(server_args))
if not backend:
raise ValueError("Please provide valid engine arguments")
elif bench_args.backend == "runtime":
backend = Runtime(**dataclasses.asdict(server_args))
else:
raise ValueError('Please set backend to either "engine" or "runtime"')

tokenizer_id = server_args.model_path
tokenizer = get_tokenizer(tokenizer_id)

# Set global environmnets
set_ulimit()
random.seed(bench_args.seed)
np.random.seed(bench_args.seed)
zolinthecow marked this conversation as resolved.
Show resolved Hide resolved

input_requests = get_dataset(bench_args, tokenizer)

warmup_requests = sample_random_requests(
input_len=20,
output_len=4,
num_prompts=2,
range_ratio=0.8,
tokenizer=tokenizer,
dataset_path=bench_args.dataset_path,
)

# Warm up
throughput_test_once(
backend_name=bench_args.backend,
backend=backend,
reqs=warmup_requests,
ignore_eos=not bench_args.disable_ignore_eos,
)

result = throughput_test_once(
backend_name=bench_args.backend,
backend=backend,
reqs=input_requests,
ignore_eos=not bench_args.disable_ignore_eos,
)

if bench_args.result_filename:
with open(bench_args.result_filename, "a") as fout:
fout.write(json.dumps(result) + "\n")

print(
"\n{s:{c}^{n}}".format(s=" Offline Throughput Benchmark Result ", n=50, c="=")
)
print("{:<40} {:<10}".format("Backend:", result["backend"]))
print("{:<40} {:<10}".format("Successful requests:", result["successful_requests"]))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", result["total_latency"]))
print("{:<40} {:<10}".format("Total input tokens:", result["total_input_tokens"]))
print(
"{:<40} {:<10}".format("Total generated tokens:", result["total_output_tokens"])
)
print(
"{:<40} {:<10.2f}".format(
"Request throughput (req/s):", result["request_throughput"]
)
)
print(
"{:<40} {:<10.2f}".format(
"Input token throughput (tok/s):", result["input_throughput"]
)
)
print(
"{:<40} {:<10.2f}".format(
"Output token throughput (tok/s):", result["output_throughput"]
)
)
print(
"{:<40} {:<10.2f}".format(
"Total token throughput (tok/s):", result["total_throughput"]
)
)
print("=" * 50)

return result


if __name__ == "__main__":
parser = argparse.ArgumentParser()
ServerArgs.add_cli_args(parser)
BenchArgs.add_cli_args(parser)
args = parser.parse_args()
server_args = ServerArgs.from_cli_args(args)
bench_args = BenchArgs.from_cli_args(args)

logging.basicConfig(
level=getattr(logging, server_args.log_level.upper()),
format="%(message)s",
)

throughput_test(server_args, bench_args)
Loading
Loading