Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

optimize MiniMax-Text-01 lightning_attn_decode triton #2966

Merged
merged 1 commit into from
Jan 18, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,10 @@ def _decode_kernel(
h: tl.constexpr,
n: tl.constexpr,
d: tl.constexpr,
d_original: tl.constexpr,
e: tl.constexpr,
e_original: tl.constexpr,
BLOCK_SIZE: tl.constexpr = 32,
):
off_bh = tl.program_id(0)
off_h = off_bh % h
Expand All @@ -39,21 +42,38 @@ def _decode_kernel(
d_idx = tl.arange(0, d)
e_idx = tl.arange(0, e)

q = tl.load(Q + qk_offset + d_idx)
k = tl.load(K + qk_offset + d_idx)
v = tl.load(V + v_offset + e_idx)
# Create masks for original dimensions
d_mask = d_idx < d_original
e_mask = e_idx < e_original

kv = tl.load(KV + kv_offset + d_idx[:, None] * e + e_idx[None, :])
# Load with masking
q = tl.load(Q + qk_offset + d_idx, mask=d_mask, other=0.0)
k = tl.load(K + qk_offset + d_idx, mask=d_mask, other=0.0)
v = tl.load(V + v_offset + e_idx, mask=e_mask, other=0.0)

# Load KV with 2D masking
kv = tl.load(
KV + kv_offset + d_idx[:, None] * e + e_idx[None, :],
mask=(d_mask[:, None] & e_mask[None, :]),
other=0.0,
)

# Compute outer product using element-wise operations
k_v_prod = k[:, None] * v[None, :]
kv = ratio * kv + k_v_prod

# Store KV with 2D masking
tl.store(
KV + kv_offset + d_idx[:, None] * e + e_idx[None, :], kv.to(KV.dtype.element_ty)
KV + kv_offset + d_idx[:, None] * e + e_idx[None, :],
kv.to(KV.dtype.element_ty),
mask=(d_mask[:, None] & e_mask[None, :]),
)

# Compute matrix-vector multiplication using element-wise operations and reduction
o = tl.sum(q[:, None] * kv, axis=0)
tl.store(Out + o_offset + e_idx, o.to(Out.dtype.element_ty))

# Store output with masking
tl.store(Out + o_offset + e_idx, o.to(Out.dtype.element_ty), mask=e_mask)


def lightning_attn_decode(q, k, v, kv, s):
Expand All @@ -62,26 +82,27 @@ def lightning_attn_decode(q, k, v, kv, s):
e = v.shape[-1]
assert n == 1, "Sequence length must be 1 in decode mode"

# Pad dimensions to power of 2
# Get padded dimensions (power of 2)
d_padded = next_power_of_2(d)
e_padded = next_power_of_2(e)

# Pad inputs
q_padded = F.pad(q, (0, d_padded - d))
k_padded = F.pad(k, (0, d_padded - d))
v_padded = F.pad(v, (0, e_padded - e))
kv_padded = F.pad(kv, (0, e_padded - e, 0, d_padded - d))

# Ensure inputs are contiguous
q_padded = q_padded.contiguous()
k_padded = k_padded.contiguous()
v_padded = v_padded.contiguous()
kv_padded = kv_padded.contiguous().to(torch.float32)
s = s.contiguous()

# Create output tensor (padded)
o_padded = torch.empty(b, h, n, e_padded, dtype=v.dtype, device=v.device)

# Create padded tensors without actually padding the data
q_padded = torch.empty(b, h, n, d_padded, dtype=q.dtype, device=q.device)
k_padded = torch.empty(b, h, n, d_padded, dtype=k.dtype, device=k.device)
v_padded = torch.empty(b, h, n, e_padded, dtype=v.dtype, device=v.device)
kv_padded = torch.empty(
b, h, d_padded, e_padded, dtype=torch.float32, device=kv.device
)

# Copy data to padded tensors
q_padded[..., :d] = q
k_padded[..., :d] = k
v_padded[..., :e] = v
kv_padded[..., :d, :e] = kv

# Launch kernel
grid = (b * h, 1)
_decode_kernel[grid](
Expand All @@ -95,10 +116,12 @@ def lightning_attn_decode(q, k, v, kv, s):
h=h,
n=n,
d=d_padded,
d_original=d,
e=e_padded,
e_original=e,
)

# Remove padding
# Get unpadded outputs
o = o_padded[..., :e]
kv_out = kv_padded[..., :d, :e]

Expand Down Expand Up @@ -351,6 +374,8 @@ def test_lightning_attention_implementations(model_params):
msg="Lightning attention implementations produce different kv results",
)

print("✅ Two implementations match")


def _build_slope_tensor(n_attention_heads: int):
def get_slopes(n):
Expand All @@ -375,7 +400,7 @@ def get_slopes_power_of_2(n):


def get_benchmark():
batch_size_range = [2**i for i in range(0, 12)] # max 2048
batch_size_range = [i for i in range(1, 33)] # max 32
seq_length_range = [1] # decode mode sequence length is fixed to 1
configs = list(itertools.product(batch_size_range, seq_length_range))

Expand Down
Loading